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Introduction

Gravitational waves are the radiative component of the gravitational field,
propagating at the same speed of light in vacuum and originated by the
re-arrangements of energy/matter distributions [1, 2]. Their existence is
prescribed not only by Einstein’s general theory of relativity, but also by
any theory of gravity based on a metric tensor. Although their existence was
proven indirectly by observations of binary pulsar orbits (e.g. the PSR1913+16
[3] and the PSRJ0737-3039A/B [4]), they have never been directly detected
in laboratories. Their direct detection will be important for different rea-
sons.

Regarding the physics of gravity, testing the existence and the prop-
erties of gravitational radiation will provide another strong, independent
confirmation of general relativity. It will also, in principle, provide tests for
alternative theories of gravity, such as the Brans-Dicke theory predicting
scalar gravitational waves [1].

The most exciting follow-up of gravitational wave detection, however,
will be its application to future research in astrophysics and cosmology.
In fact, compact astrophysical objects like neutron stars and black holes
are expected to radiate large amounts of energy in gravitational waves
[5, 6, 7, 8, 9, 10] which, if detected, can provide many details about the
objects themselves. Due to the nature of their generation, gravitational
signals would give complementary measurements with respect to electro-
magnetic observations, providing access to extreme phenomena taking place
inside massive astrophysical objects, impossible to reproduce in laborato-
ries and inaccessible to current instruments [11]. Furthermore, electro-
magnetic radiation is emitted by the collective, incoherent motion of in-
dividual atoms, while gravitational radiation arises from coherent, bulk mo-
tion of matter. Another advantage is the weak gravitational wave cou-
pling with matter (the coupling constant is Newton’s gravitational constant
G ' 7 · 10−11 N m2 kg−2). In fact, unlike light, gravitational radiation is
only slightly attenuated by matter, making it possible to observe very dis-
tant objects or, equivalently, gravitational signals from the early universe,
possibly from its inflationary phase [5, 12, 13].

The small coupling between gravitational waves and matter, however,
also makes experimental measurements a very challenging task [14]. In fact,
differently from what happens in other fields of experimental physics, the
signal is expected to have the same order of magnitude of the detector
intrinsic noise fluctuations and of other “spurious” signals of environmental
origin, that enter the instrument through various couplings (e.g. mechanical
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and electrical). This makes the recognition of gravitational signals with no
known waveform with a single detector impossible in principle, and requires
a network of M > 1 detectors and joint data analysis procedures.

Moreover, the emission of strong gravitational radiation is a process re-
quiring extreme conditions, i.e. large masses moving at relativistic velocities
and confined in regions comparable in size to the Schwarzschild radius. It is
therefore impossible, from a practical point of view, to produce measurable
gravitational waves on Earth [14]. On the one hand, this implies that we can
only calibrate our detectors by means of forces equivalent to gravitational
waves as prescribed by general relativity; on the other hand, detectable sig-
nals will only come from astrophysical and cosmological sources, the only
phenomena meeting such extreme requirements. This introduces the further
problem of having no control on the signal source (the signal parameters, like
the time of arrival, are unknown) and of requiring accurate models for the
source itself (without models, detection of the signal is much more difficult).
Again, this leads to the requirement of a detector network and coherent data
analysis techniques.

A number of gravitational wave detectors are currently online, aiming
at detecting waves from astrophysical and cosmological sources. The main
experiments are three kilometer-baseline interferometric detectors (LIGO
[15] and VIRGO [16]) and three resonant-bar detectors (AURIGA [19], EX-
PLORER [20] and NAUTILUS [21]).

The current data analysis procedures for detecting gravitational waves
involve different methods that depend on the gravitational source. To detect
impulsive gravitational waves from compact object mergers, supernova core
collapses and gamma-ray burst engines, the so-called incoherent methods
are used, looking for time coincidence between event lists provided by dif-
ferent detectors. An important effort in this direction is done by the IGEC
collaboration and uses data from bar detectors [22, 23], while data from
interferometers are analyzed with coincidence searches like the WaveBurst
algorithm [59]. For inspirals and continuous signals, coherent methods are
preferred, since the strong phase coherence of the waveforms can be ex-
ploited [66]. Coherent searches look for cross-correlations between different
detectors or search for the maximum likelihood over the signal parameter
space. They are mostly used by the LIGO and VIRGO groups to analyze
data from interferometers.

Despite the intensive efforts, all data analyses ran produced negative
results: the null hypothesis, i.e. the statement “no gravitational signal is
present in the data”, still has not been rejected (see for example [23, 42, 43,
44, 45]). Since the measured event rate with current detectors is too low to
be useful for physics, research is now aiming at improving the sensitivity of
interferometric detectors, and will eventually lead, in the next years, to a
new network of more sensitive (advanced) detectors, greatly extending the
observable distance and thus hopefully increasing the rate of gravitational
events to reasonable values (a few events per year) [24, 25]. Research is
also going on for resonant-mass detectors, whose natural evolution is to-
wards spherical and DUAL acoustic detectors [26, 27, 28]. The future de-
tector network will also be enhanced by a completely new and independent
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space-borne instrument (LISA—Laser Interferometer Space Antenna) sen-
sitive to a different class of gravitational signals impossible to detect on
Earth, namely the 10−4-10−1 Hz low frequency band [29]. There are also
research efforts aimed at devising new data analysis strategies, requiring
fewer assumptions about sources and reasonable computational power. In
particular, coherent methods look promising even for detecting impulsive
gravitational waves, and they are being extended to this class of signals to
overcome the limitations of incoherent searches [62, 63, 64, 60, 61].

This thesis belongs to the latter research field. Its purpose is the de-
velopment and characterization of data analysis strategies for coherent de-
tection of impulsive gravitational waves, and their discrimination from non-
gravitational signals, with networks of detectors. In particular, we investi-
gate possible ways to design a detection algorithm by exploiting the geo-
metrical properties of the detectors response, rather than looking for coinci-
dences between particular time-frequency structures in detector outputs or
fitting the outputs to known signal templates.

The resulting detection algorithm is sensitive to signatures connected to
the gravitational wave structure itself (in particular, its physical symme-
tries) and to the way detectors respond to the wave, without the need for
specific assumptions about how the wave is actually generated. One expects
robustness against unavoidable non-gravitational disturbances, possibly an
improved detection efficiency with respect to existing methods, and reduced
computational requirements.

We also review some problems connected to the existing network of de-
tectors, we discuss how they limit the ability to gather information about
gravitational signals and show how they could be reduced.

Monte Carlo numerical simulations are being performed, with support
from the AURIGA group at the Legnaro National Laboratories (LNL) in
Padova, to evaluate the performance of the proposed algorithm. Both exist-
ing and ideal detector networks are considered, to determine how a non-ideal
network can spoil the performance of the method. For the first characteri-
zation, only simulated detector responses are being used.

The plan of the thesis is as follows.
In chapter 1 we give a brief introduction to Einstein’s general theory

of relativity, focusing on gravitational waves: their symmetry properties,
the generation mechanism, their effects on matter and how these effects
can be exploited for performing measurements. Expected astrophysical and
cosmological sources are also briefly reviewed.

In chapter 2 we describe how the measurement process takes place in
modern detectors, focusing on instrument response to gravitational waves
and on the unavoidable contamination of the output by noise and spurious
disturbances.

The data analysis devised to detect the presence of gravitational wave
transients in the detector network outputs and to discriminate them from
spurious signals is introduced in chapter 3. We give an introduction to
hypothesis testing, summarize existing detection algorithms, describe the
network response to gravitational waves and present the main results of the
thesis.
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In chapter 4 we provide the details of the algorithm implementation and
explain the choice of detector networks and other simulation parameters.
Results of the Monte Carlo simulations we are running to validate the algo-
rithm are finally presented.

The conclusions are drawn in chapter 5, together with some topics that
deserve further investigation.
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Chapter 1

General relativity and
gravitational waves

1.1 Newton’s gravitation and general relativity

At the beginning of the 20th century, Newtonian dynamics and gravitation
formed the best theoretic framework accounting for gravitational effects [32].
Their mathematical apparatus consists basically of the force-acceleration
relation and the inverse-square law for the gravitational interaction

f = m
d2r

dt2
, fg(r) = G

mM

r2
, (1.1)

where f is the force, m is the mass, r is the position vector measured in
an inertial reference frame and fg is the gravitational force due to a second
mass M . These reasonably simple equations allowed to predict the motion
of the moon and planets in the solar system with unprecedented accuracy,
leading also to the discovery of Neptune and other celestial bodies in the
solar system.

However, Newton’s theory is incomplete under several aspects [1, 32].
From an experimental point of view, for example, it fails to explain the
precessing orbit of Mercury, requiring ad-hoc adjustments, such as the in-
troduction of other celestial bodies, which are contradicted by observations.
Regarding more theoretical aspects, the severe flaw of Newton’s equations
is that they only hold in a set of “privileged” frames of reference, i.e. the in-
ertial ones. To support this idea and define this special class of frames, one
is forced to postulate the existence of an “absolute” space. Moreover, New-
ton’s theory makes no attempt to explain the physical origin of the inertial
forces that an observer experiences when its reference frame is accelerated.
Finally, from the introduction of Einstein’s special theory of relativity in
1905, it became immediately clear that Newtonian gravitation, being based
on an instantaneous action, was a non-relativistic theory and so it had to
be revised.

Ten years after formulating special relativity, Einstein himself managed
to complete this remaining task, making a significant breakthrough in our
understanding of gravitation by means of the general theory of relativity,
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or general relativity in short [33]. In his search for a better description of
gravitation, Einstein was inspired by several principles, both qualitative and
quantitative, of paramount importance and generality. The most important
ones are now quickly reviewed [30].

The so-called Mach’s principle states that inertial effects, including the
existence of inertial reference frames, are not due to the presence of an
absolute space, but are fixed by the mass distribution of neighboring objects.
Therefore, the concept of inertial effect only makes sense with respect to
neighboring objects. Then, in our universe one expects inertial reference
frames to be at rest, or moving at constant relative velocity, with respect to
the fixed stars, where most of the existing matter is thought to concentrate.
This idea is supported by observations, as the fixed stars appear at rest (not
rotating) with respect to inertial reference frames available on Earth. It
is worth noting that Mach’s point of view involves a coupling between all
existing mass; this interaction is the origin of inertial forces.

The equivalence principle takes its origin from a number of observations,
first done by Galileo Galilei, showing the numerical equivalence of inertial
and gravitational mass. It is the quantitative statement that the motion
of a particle experiencing only gravitational interactions does not depend
on the particle composition, mass or other characteristics. That is, under
gravitational interactions, all particles fall in the same way. This extremely
important observation is now verified with very high accuracy [34] and is
considered the key idea at the base of general relativity. An interesting re-
formulation of the principle is the statement that all gravitational effects are
locally canceled whenever one chooses a free-fall reference frame, i.e. a frame
at rest with particles falling in the gravitational field itself. Another form
of the principle is that everything couples to the gravitational interaction:
every form of energy, including mass, interacts in the same way with every
other physical entity.

The general covariance principle is necessary whenever one wants to
generalize the principle of special relativity to all observers, both inertial
and non-inertial. Requiring the equivalence of all observers means that the
equations of physics must hold in every coordinate system and frame of
reference. This strong requirement implies that physical equations have to
be expressed in tensorial form; this is the essence of general covariance. This
principle was considered a fundamental assumption by Einstein, who stated
that all observers, not only inertial ones, should be able to discover the laws
of physics.

The well-known correspondence principle states that each new theory
must be compatible with previous descriptions under opportune conditions:
general relativity has to reduce to special relativity in absence of gravi-
tational interactions, and to Newtonian gravitation in the limit of weak
gravitational interactions and small velocities.

Note that the formulation of those principles differs from author to au-
thor; for example, some reduce them to two forms of the equivalence prin-
ciple, the strong equivalence principle (general covariance) and the weak
equivalence principle (equivalence between inertial and gravitational mass).

The crucial consequence of the principles is that, in general relativity,
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spacetime must be identified and described with a curved Riemannian mani-
fold [34]: gravitational effects are due to geometrical properties of spacetime,
namely its curvature, represented by the Riemann curvature tensor Rµν%σ.
Physical laws are represented by equations containing tensorial quantities,
and involve tensorial algebra and calculus over the spacetime manifold. This
accounts for general covariance. As in special relativity, motion of free par-
ticles and electromagnetic radiation is described by geodesic curves, whose
trajectories are determined by the underlying spacetime geometry through
the metric tensor gµν . As geodesics are independent from the properties
of particles and light rays, the equivalence principle is also satisfied. With
respect to Newton’s gravitation, the metric tensor gµν plays the role of
the gravitational potential; therefore, the field equations involve the Rie-
mann curvature tensor, a quantity which contains combinations of the sec-
ond derivatives of gµν . The field equations establish the spacetime geometry
and its connection to the source of the gravitational field, which Einstein
set equal to the stress-energy tensor Tµν of special relativity. This seems
to satisfy also Mach’s principle, since inertial and gravitational effects (de-
scribed by the spacetime geometry) are determined by the mass distribution
(described by the stress-energy tensor).

Today, after a century since its formulation, general relativity is con-
sidered the most complete theory of gravitation at the macroscopic scale
[32]. Thanks to astrophysical data collected in the last years, several pre-
dictions have been experimentally tested with good accuracy, even in the
strong-field regime [3, 4, 34]. The constraints put by experiments on several
parameters strongly favor general relativity over the other metric theories
of gravitation. The theory has already influenced technology, as the widely
used Global Positioning System needs to take into account general rela-
tivistic effects to operate correctly [35]. However, important predictions
still lack a direct experimental confirmation, notably gravitational radiation
[23, 42, 43, 44, 45]. Furthermore, there are also several open questions of
theoretical nature, e.g. the relation between general relativity and Mach’s
principle [36].

1.2 Einstein’s field equations

The complete Einstein’s field equations and some of their properties are now
briefly reviewed. The equations can be written as [1, 2]

Rµν −
1
2
R gµν =

8πG
c4

Tµν , (1.2)

where Rµν = Rρµρν is the Ricci tensor, R = Rµµ is the scalar curvature,
gµν is the spacetime metric tensor, Tµν is the stress-energy tensor and c '
3 · 108 m s−1 is the speed of light in vacuum.

Physically, these equations couple the spacetime geometry to the en-
ergy/matter fields [37]. In fact, the left-hand side contains quantities de-
scribing the spacetime geometry, i.e. curvature and metric tensors, while the
right-hand side contains all non-gravitational contributions like matter and
electromagnetic fields. The coupling constant 8πG/c4 ' 2 ·10−43 N fixes the
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amount of energy density required to produce a unitary spacetime curvature.
This amount is enormous and therefore under many conditions, including
most of the solar system, spacetime can be considered flat to a good approx-
imation. Note that, as the equations are between tensor quantities, they are
invariant in form under coordinate transformations as required by general
covariance. In general, these equations fix at the same time the evolution
of the spacetime geometry due to the energy distribution and the motion
of energy due to spacetime geometry, and this complicated interaction can
not be decoupled. However, in presence of simplified configurations, the
equations can be used to determine the spacetime metric given the source
stress-energy tensor, i.e. the energy distribution.

From a mathematical point of view, the field equations are 10 second
order, non-linear, coupled, partial differential equations involving 20 quan-
tities (10 components of gµν and 10 of Tµν). The non-linearity and coupling
of the equations makes the theory very difficult to handle. For example, the
principle of superposition does not hold: linear combinations of solutions
are not, in general, solutions themselves. Without this simplification it is
very difficult to find exact solutions.

Nevertheless, there are very general and interesting classifications of the
solutions [30]. An example is the Petrov classification, which groups the
possible vacuum solutions (i.e. Tµν = 0) into a hierarchy of six “types”,
depending on the algebraic properties of the Riemann tensor. The phys-
ical interpretation is that different types correspond to different classes of
physical configurations: for example, one of the types groups spacetimes
of isolated massive objects, while other types represent radiative solutions.
Despite the complexity of the equations, for very symmetric configurations
important analytical solutions have also been found and studied [30]. These
include the Schwarzschild spacetime, i.e. the metric in presence of a non-
rotating, electrically neutral mass distribution with spherical symmetry; the
Kerr spacetime, i.e. the generalization of the Schwarzschild solution to a ro-
tating mass distribution; the Reissner-Nordstrøm spacetime, i.e. the further
generalization to a charged and rotating spherical mass distribution. These
solutions are very useful in modeling spherical distributions of mass, such
as stars and black holes. When strong symmetries are not available, but
the fields can be considered weak or the motion is non-relativistic, the equa-
tions are usually studied through series expansion, yielding the so-called
post-Newtonian and post-Minkowskian approximations. A similar approx-
imation leads to the linearized radiative solutions, i.e. gravitational waves,
which will be introduced now.

1.3 Gravitational waves

1.3.1 Linearization of field equations

Consider an empty region of the spacetime far from large mass distributions,
where the field equations reduce to Rµν = 0 and the geometry is described in
first approximation by the flat Minkowski metric ηµν = diag(1,−1,−1,−1).
Assuming the presence of a small metric perturbation hµν , so that gµν =
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ηµν + hµν , we are interested in the evolution of hµν . By plugging this per-
turbed metric into the field equations, neglecting terms of second and higher
order in hµν , and choosing the transverse and traceless gauge (TT gauge)
defined by hµµ = ∂µh

µ
ν = 0, it can be shown that the equations reduce to

�hµν = 0, where � = ηµν∂µ∂ν = ∇2 − c−2 ∂2

∂t2
is the d’Alembert operator

[30]. This is the famous wave equation in vacuum and it is well known
that, in general, its solutions represent waves propagating with finite ve-
locity. In this context, the waves play the role of perturbations in the flat
Minkowsky metric, and they are called gravitational waves (gws). It can be
argued that a non-vanishing perturbation hµν is not necessarily indicative of
a non-vanishing gravitational field, so the wave equation may not describe
real gravitational effects. However, one can demonstrate that a similar wave
equation holds also for the components of the Riemann curvature tensor.
Therefore, gws are actually perturbations of the spacetime curvature, and
consequently of the corresponding metric tensor. Furthermore, one can show
that gws transport energy, linear and angular momentum, so they must rep-
resent a physical effect [31].

By choosing the TT gauge and orienting the coordinate system with
the z axis parallel to the wave vector, it can be shown that only 2 of the
16 hµν components represent physically significant quantities. Moreover, in
the same gauge and coordinate system, a generic plane gravitational wave
can be described by the 3× 3 tensor

h(ct− z) = h+(ct− z) e+
TT + h×(ct− z) e×TT , (1.3)

where h+ and h× are two time-dependent amplitudes and

e+
TT =

 1 0 0
0 −1 0
0 0 0

 , e×TT =

 0 1 0
1 0 0
0 0 0

 . (1.4)

1.3.2 Relevant gw properties

The description of gws by means of the linearized general relativity involves
a number of mathematical properties with interesting physical consequences
[30], which will now be briefly reported.

First of all, from the wave equation it can be immediately recognized that
the propagation speed of gws in vacuum is c, exactly like electromagnetic
radiation. This is consistent with the principle of relativity: gravitational
interactions are forced to propagate at a finite speed, like any other physical
interaction.

As the perturbation is represented by a metric term, gws are described
by a symmetric tensor of order two. This is equivalent to saying that they
are a spin-2 field. This is a notable difference from the electromagnetic
radiation, which is represented by a spin-1 field.

The general solution depicted above shows that a plane gw has only two
“internal” degrees of freedom, represented by the two amplitudes h+(t) and
h×(t). These degrees of freedom are associated with two possible polar-
ization states, commonly known as plus and cross, which correspond to the
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tensors e+ and e× once the TT coordinate system has been chosen. One can
say that the gw spin-2 field possesses two physical helicity states, left and
right, related to the plus and cross states through a simple base transforma-
tion [1]. These states differ by a 45◦ rotation about the wave vector, as it can
be seen by applying such a rotation to the two tensors e+, e×. In principle,
with proper amplitude and phase assigned to h+(t) and h×(t), a gw can re-
alize every possible linear combination of the polarization states, including
linearly, circularly and elliptically polarized radiation, in full analogy with
the electromagnetic field. Once the coordinate system is fixed, for polarized
radiation it is useful to define a polarization angle ψ = tan−1(h×/h+), which
will be constant for linear polarization and time-dependent for elliptical and
circular polarization.

Another general property which can be evinced from the h expression
is hijzj = 0, i.e. the wave tensor has a null eigenvalue in the direction of
propagation. This holds in every coordinate system. This has the important
physical implication that the perturbation is always orthogonal to the wave
vector, i.e. it is transverse, another analogy with electromagnetic waves.

Finally, it can be readily seen that tr(h) = 0, i.e. h is a traceless tensor.
As the trace is invariant under coordinate changes, this is true in any coor-
dinate system. The physical meaning of this algebraic property is that a gw
induces geometrical deformations that do not change volumes.

1.4 Gw effect and detection

A crucial assertion of general relativity is that the motion of a free-falling
particle is represented by a geodesic curve of the spacetime manifold. Once
the coordinate system is fixed and the geodesic curve is expressed in para-
metric form as ξµ(τ), where τ is the geodesic proper time, it can be shown
that [1]

d2ξµ

dτ2
+ Γµνρ

dξν

dτ
dξρ

dτ
= 0, (1.5)

where Γµνρ are the connection coefficients, quantities related to the metric
and its first derivative. This differential equation is called geodesic equa-
tion and physically represents the particle equation of motion in the chosen
coordinate system.

As is well known from the equivalence principle, gravitational effects can
not be revealed in the geodesic of a single free-falling particle, but they can
be detected by measuring deviations between the geodesics of neighboring
particles. In fact, given two nearby geodesics ξµ(τ) and ξµ(τ) + εµ(τ), the
equation of motion for the small separation vector εµ can be approximated,
to first order in εµ, by the geodesic deviation equation [1]

D2εµ

Dτ2
= Rµνλρ ε

λ dεν

dτ
dερ

dτ
, (1.6)

where Dεµ

Dτ = dεµ

dτ + Γµνρ dξρ

dτ ε
ν represents the covariant derivative along the

curve ξµ(τ). As the equation involves the Riemann curvature tensor, εµ is
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clearly driven by gravitational effects and not by coordinate ones (e.g. iner-
tial forces in accelerated systems). It is said that the two particles experience
a tidal deviation. In the case of gws, “nearby geodesics” must be intended
with respect to gw wavelength, so the geodesic deviation approximation
holds whenever the physical system containing the free-falling test particles
(i.e. the gw detector) is small with respect to the characteristic gw wave-
length. It will be shown later that for existing gw detectors this is in many
cases a very good approximation.

To intuitively discuss general relativity measurements, we need the ref-
erence frame where physics most resembles the classical Newtonian theory,
the so-called Fermi normal coordinates (FNC). The FNC origin is attached
to the center of mass of the two particles (or, in general, of the gw detec-
tor), its axes are orthogonal and aligned to three gyroscopes, and the time
coordinate is given by a clock at rest in the origin [2]. In this system gµν is
constant up to its first derivative and the space components of eq. 1.6 read

d2εi

dτ2
= Ri0j0 ε

j =
1
2

d2hij
dτ2

εj . (1.7)

Using expression 1.3, eq. 1.7 reduces to an ordinary Newtonian equation of
motion

ε̈i =
1
2
ḧij(t) εj =

1
2

[
ḧ+(t) e+

ij + ḧ×(t) e×ij
]
εj . (1.8)

Consequently, in the coordinate system of the laboratory, two nearby free-
falling particles experience a relative tidal acceleration, with magnitude pro-
portional to the second time derivative of the wave amplitude and direction
determined by the polarization tensors e+ and e×. The effect can be de-
picted by considering a ring of free particles (figure 1.1). A gw impinging
along the ring axis causes a geometrical distortion of the ring shape, modu-
lated by the gw amplitude. It is easy to show that the general gw properties
are inherited by e+ and e× and therefore manifest themselves in the motion
of the ring; for example, the transverse character of the gw causes absence
of motion in the direction of the wave vector, while the spin-2 character is
responsible for the elliptical shape of the deformation and for the fact that
the two polarizations differ by a 45◦ rotation about the wave vector.

Eq. 1.8 suggests that the gw amplitude can be inferred by measuring the
distance between nearby point masses or, more concretely, the displacement
of a volume element from its equilibrium in the laboratory frame [14]. How-
ever, as measurement instruments can only output a single number, what
can be actually measured is the projection of the mass motion ε(t) along
the line joining the two particles. The gw measurement process is therefore
represented by the saturation of the gw tensor h with a constant tensor D
(detector tensor), determined by the rest position of the test masses with
respect to the wave vector k and thus containing all information about the
detector geometry. The observable quantity sgw(t) is consequently a linear
combination of the polarization amplitudes:

sgw(t) = hij(t)Dij =
= h+(t) e+

ij D
ij + h×(t) e×ij D

ij =

= h+(t) F+(k) + h×(t) F×(k). (1.9)
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Figure 1.1: deformation of a ring of free particles induced by a gw, with
plus polarization (upper row) and cross polarization (lower row). The left
column shows a positive wave amplitude (h > 0), the middle column a
null amplitude (no deformation) and the right column a negative amplitude
(h < 0).

The coefficients

F+(k) = e+
ij D

ij = tr(e+ D)

F×(k) = e×ij D
ij = tr(e×D) (1.10)

form the detector antenna pattern and represent geometric factors fixed by
the relative orientation between the detector and the wave vector k. Clearly,
the polarization matrices have to be expressed in the detector coordiate
system, that is

e+ = E e+
TT E

T

e× = E e×TT E
T , (1.11)

where e+
TT and e×TT are those defined in the TT frame (eq. 1.4) and E is

a suitable k-dependent Euler rotation matrix transporting the TT frame to
the detector one [38]. F+ and F× are usually normalized to be dimensionless
numbers between−1 and +1, so they express the detector angular sensitivity
to gws. For this reason they are often written as functions of the spherical-
polar angles (ϑ, ϕ) describing the orientation of the gw source, so that the
wave vector is given by

k = −k

 cos(ϕ) sin(ϑ)
sin(ϕ) sin(ϑ)

cos(ϑ)

 (1.12)

(this notation will also be used in the rest of the thesis). In general F+, F×

or both may vanish for some direction, so the detector may be insensitive
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to gws for some combinations of direction and polarization. A polarization-
independent angular sensitivity can be defined by averaging the antenna
pattern function F+(ϑ, ϕ) over all polarization angles, yielding

F̂ (ϑ, ϕ) =

√
[F+(ϑ, ϕ)]2 + [F×(ϑ, ϕ)]2

2
. (1.13)

Zeroes of this function represent directions for which the detector is com-
pletely blind to gws. It is worth noticing that the antenna pattern is re-
markably determined by the form of the polarization states and so reflects
the gw properties and symmetries. Other kind of waves, e.g. scalar gws
predicted by extensions of general relativity, would be sought by the same
detector with a different angular sensitivity [39].

Existing gw detectors implement eq. 1.8 with two main approaches, re-
viewed in the following subsections.

1.4.1 Resonant detectors

An approach to measure the tidal deviation between test particles consists
in monitoring the deformation of a classical mechanical harmonic oscillator,
i.e. two test masses joined by a restoring force whose magnitude is linear in
the displacement from the rest position. The first attempt in this direction
was made by Weber [40] and is still exploited by several detectors (AURIGA
[19], NAUTILUS [21] and EXPLORER [20]). By studying the equation of
motion of the system subject to the gw force, it can be shown that such
detectors give the maximum response to gws in a rather narrow frequency
band near the mechanical resonance.

In practice, setting up two test masses linked by an harmonic force is very
challenging; fortunately, mechanical oscillation modes of elastic bodies are
equivalent to harmonic oscillators in the neighborhood of their characteristic
frequencies. Therefore, real resonant gw detectors monitor the energy of one
(or several) oscillation modes of a large elastic body by means of suitable
transducers that convert mechanical vibrations into electrical signals (figure
1.2). Historically, the elastic body is a cylinder-shaped bar and the chosen
oscillation mode is the fundamental longitudinal one, a setup that resembles
closely the theoretical two-mass oscillator [14]. Operating bars have a mass

Figure 1.2: detecting gws with a resonant detector.
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of ∼ 3 · 103 kg, length of ∼ 2 m and fundamental mode at ∼ 1 kHz. They
thus exhibit high sensitivities in narrow bands around that frequency.

The geometry of a resonant-bar detector is described by a versor n,
parallel to the bar length. As the bar is equivalent to two test particles, the
geodesic deviation equation leads to the detector tensor Dij = ninj . In a
Cartesian coordinate system with the x axis aligned along n, the antenna
pattern functions then read

F+(ϑ, ϕ) = cos2(ϑ) cos2(ϕ)− sin2(ϕ)
F×(ϑ, ϕ) = cos(ϑ) sin(2ϕ). (1.14)

They are plotted in figure 1.4. As evident from the F̂ plot, they both vanish
in the two opposite directions (ϑ = π/2, ϕ = 0) and (ϑ = π/2, ϕ = π),
corresponding to the x axis, which we set parallel to the bar. A bar detector
is therefore completely blind to waves travelling parallel to its length. On
the contrary, the maximum sensitivity is to waves impinging perpendicularly
to it.

1.4.2 Interferometers

The physical principle exploited by interferometric gw detectors is the inter-
ference between coherent light beams. The approach was first demonstrated
by Forward [41]. The basic topology of interferometric detectors is depicted
in figure 1.3. A coherent light beam is divided by a splitter in two beams,
which travel to two far away, free-falling test masses. After being reflected,
the beams rejoin in the beam splitter, forming an interference patter in
the optical detector (photodiode). The detector response can be used to
reconstruct even tiny relative displacement of the test masses. In fact, as
shown in figure 1.1, gws tend to stretch one of the arms while compressing
the other, leading to a difference in the two optical paths and thus in the
relative phases of the beams joining back in the beam splitter.

Practically, the free-fall condition of the test masses, beam splitter and
light beams can be achieved approximately and only in a limited frequency
band. This is accomplished using very complex suspension systems that de-
couple the mass motion from the external environment as much as possible,
while ultra-high vacuum along all the optical paths limits light-gas interac-
tions that would affect the phase measurement. Despite the technological
difficulties of this approach, current interferometers (LIGO [15], VIRGO
[16], GEO600 [17] and TAMA300 [18]) are orders of magnitude more sensi-
tive than the original prototype and are both the most sensitive and most
wideband available gw detectors [14], as will be discussed in chapter 2.

The geometry of an interferometer is described by two versors n and
m, aligned along the arms. As, from a geometric point of view, each arm
performs distance measurements between two test masses, the resulting de-
tector tensor is Dij = 1

2(ninj −mimj), resembling the combination of two
resonant-bar detectors aligned along the arms. Although the arms need not
be orthogonal, in operating detectors this is approximately the case, because
this setup matches the quadrupolar symmetry of gws, improving the instru-
ment sensitivity. In Cartesian coordinates with x and y along the arms,
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Figure 1.3: basic layout of an interferometric gw detector.

orthogonal-arm interferometers have the antenna pattern

F+(ϑ, ϕ) =
1
2

(1 + cos2(ϑ)) cos(2ϕ)

F×(ϑ, ϕ) = cos(ϑ) sin(2ϕ), (1.15)

which is plotted in figure 1.4. Both functions vanish in the four directions
given by ϑ = π/2 and ϕ = {1

4π,
3
4π,

5
4π,

7
4π}, the bisectors of the xy plane.

Interferometers are therefore completely blind in four directions on the plane
of the arms. On the other hand, they are most sensitive to waves coming
perpendicularly to this plane, the condition of perfect match between the
wave and instrument symmetries.

It can be easily seen that tr(D) = ‖n‖2 − ‖m‖2 = 0: the detector ten-
sor of an interferometer has a vanishing trace. This does not happen for
resonant-bar detectors. This is yet another indication of the interferometer
matching to the gw geometry, but it effectively prevents testing the van-
ishing trace of gws, as any non-null trace contribution is projected away
from the instrument response. Indeed, this can be intuitively understood by
remembering that the physical role of the trace is a “breathing” deforma-
tion (volume change). Such deformations can not evidently be sensed by an
interferometer, as they represent common-mode length changes of the two
arms.

1.5 Gw generation and sources

Formally, the mechanism giving rise to linearized gravitational radiation
from a source is very similar to the electromagnetic case. In fact, one can
prove that the right-hand side of the wave equation �hµν = 0, which van-
ishes in vacuum, represents the source term and contains the source stress-
energy tensor. The solution is therefore the well-known retarded potential
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Figure 1.4: antenna pattern functions for the discussed detector schemes.
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[1]

hµν(x, t) ∝
∫
Sµν(y, t− |x− y|)

|x− y|
d3y, (1.16)

where Sµν = Tµν − 1
2ηµνT

ρ
ρ. An important general result known as the peel-

ing theorem [30] states that, moving away from an isolated source towards
infinity, the various spacetime components of the Petrov hierarchy progres-
sively “peel off”, leaving only the radiative solution at infinity in full analogy
with electromagnetism, in which the space around the source divides into
the “near” and “radiation” zones.

Gws propagating in the radiation zone can be expressed by expanding
the source in multipole moments, which reveals another important distinc-
tion between gws and electromagnetic waves: the first multipole moment
contributing to gravitational radiation is the quadrupole, associated with
l = 2 spherical harmonics. This fact holds regardless of the source proper-
ties. Its physical reason is that the first two multipole moments represent
the source mass and its center-of-mass linear momentum; these are strictly
conserved for isolated sources, so their time dependence vanishes and they
can not contribute to gravitational radiation [2]. Moreover, it can be shown
that higher multipole moments are scaled by increasingly negative powers
of c, so the dominant contribution is always by far the quadrupole.

Whenever the source also involves slow internal motion, the emitted
radiation in the wave zone can be further approximated by the so-called
quadrupole formula [32]

hij(x, t) =
G

c4

2
r

(
d2Qij
dt2

)TT
t−r/c

, (1.17)

where Qij(t) =
∫
%(x, t)

(
xixj − 1

3x
2δij
)

d3x is the traceless quadrupole mo-
ment of the source mass density % and the superscript TT means that only
the transverse and traceless component of the quadrupole moment con-
tributes to the radiation. This approximation is very good in the case of
non-relativistic sources, but gives correct orders of magnitude even for rel-
ativistic ones. From the quadrupole formula one can approximate the total
power radiated by the source (luminosity) as

L =
G

5c5

d3Qij
dt3

d3Qij

dt3
. (1.18)

The factor G/c5 ' 3 · 10−53 W−1 strongly suppresses the emission: it is
practically impossible to produce relevant gws on Earth. The only hope
for significant time-variations of Q(t) is given by cosmic phenomena [14].
In literature, cosmic gw sources are usually classified into three categories,
according to the very different time-frequency characteristics of the signals
they emit [32]. The study of cosmic gw radiation is still an open problem,
and the current status is reviewed in the following subsections.

1.5.1 Periodic sources

By definition, periodic (and quasi-periodic) gw signals are composed of a
discrete set of frequencies whose evolution is negligible with respect to the
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observation time. Clearly, these signals can be described with a limited
number of parameters. For example, simple monochromatic signals can be
modelled conveniently as

h+(t) = h+
0 cos(ωt+ ϕ+

0 ),
h×(t) = h×0 cos(ωt+ ϕ×0 ), (1.19)

where the amplitudes h+
0 and h×0 , the angular frequency ω and the initial

phases ϕ+
0 , ϕ×0 are in general slowly varying functions of time.

Among the expected periodic sources there are quasi-stationary astro-
physical systems [5] like binary stars [3, 4] and spinning compact objects
exhibiting deviations from axial symmetry (e.g. pulsars and neutron stars)
[6]. These sources can often be modelled by treating relativistic effects as
perturbations of Newtonian motions: on the one hand, this allows to accu-
rately predict the waveform of the emitted gw signal to arbitrary precision
(e.g. with the quadrupole formula); on the other hand, the signal parame-
ters (e.g. frequency) can be related to physical parameters of the radiating
system, like mass and orbital period. Such systems, especially those in
highly relativistic regimes, may also involve more complex behaviours like
spin-orbit coupling and orbital precession, which influence the emitted gw
signal. It is often said that the gw signal “maps” the spacetime metric in
the neighborhood of the emitting system, extracting detailed information
about its dynamics.

Though still uncertain, the expected number of quasi-periodic sources
within the observable universe is very large. Most of the expected frequencies
range approximately between 10−4 Hz and 103 Hz. Consequently, the wave-
length spectrum extends above λmin = c/fmax ' 300 km and the geodesic
deviation used in existing ground-based detectors is a good approximation.

1.5.2 Bursts

A gw signal is classified as a burst if its amplitudes h+(t) and h×(t) be-
have like transients (i.e. they are impulsive signals) and feature a time scale
shorter than the observation time. Due to this broad definition, bursts can
not be parametrized using a small number of parameters and must be de-
scribed instead by specifying the full waveforms for h+(t) and h×(t). In
some cases, however, such precision is not necessary and bursts can be given
rough descriptions, e.g. their amplitude and supporting region of the time-
frequency plane.

Strong bursts are thought to originate from violent astrophysical pro-
cesses, lasting for short times and involving large amounts of energy. This
definition embraces an extreme variability of phenomena [5], including su-
pernova and hypernova collapses [7], matter falling into black holes and
coalescence of compact objects, in particular the final merging of binary
system composed of neutron stars and black holes [8, 9, 10]. Presumably,
there are coincidences between gw and gamma-ray bursts. Due to their
highly relativistic nature, these phenomena involve general relativity in its
most non-linear and strong regime: they can not be treated with perturba-
tive methods. Furthermore, collapses and explosions are complex processes,
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Figure 1.5: example gw bursts from numerical simulations. Left: supernova
core collapse [46]. Right: final merger of a black hole/neutron star binary
system [9].

highly dependent on the state equation of the participating matter which
is still poorly known. Therefore it is impossible to analytically predict the
emitted waveforms, but it is also hard to accurately estimate their rough
parameters. Nevertheless, numerical relativity is now able to perform accu-
rate simulations even in the strong-field regime [46, 10] and so represents a
unique tool to study the resulting waveforms (figure 1.5).

Despite all the recent accomplishments, however, even the most elemen-
tary quantities like the expected burst event rates and wave magnitudes
still rely on unsettled astrophysical observations and models: this leads to
severe uncertainties, and the estimates still span several orders of magni-
tude: astrophysical bursts are expected to last from a few ms to several
seconds, while their frequency content is thought to cover the kHz band.
Therefore, ground-based detectors can safely apply the geodesic deviation
approximation to detect bursts.

1.5.3 Stochastic background

Similarly to what happens for the cosmic microwave background, the ex-
istence of a non-deterministic (stochastic) gw signal filling the universe is
expected [5]. As stochastic signals are characterized by specifying their
statistics and spectral power density, a good description of this gw “back-
ground” is given by its relative, dimensionless spectral energy density

Ωgw(f) =
1
%c

d%gw
d ln(f)

(1.20)

where %c is the critical density of the universe. This definition contains all
information about the gw background when complemented by a few assump-
tions, i.e. isotropy, stationarity and Gaussianity of the fluctuations. It must
be noted, however, that such reasonable requirements may not actually hold.

The presence of such a background is prescribed both by astrophysical
considerations and cosmological models. From an astrophysical point of
view, a contribution is expected from the superposition of many random,
independent and unresolved gw sources of the kind depicted in the previous
subsections: for example, an expected strong contribution is from galactic
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and extra-galactic white-dwarf binaries. Several cosmological models also
predict a “relic” stochastic gw background, though they are still speculative
and affected by severe uncertainties [12]. The inflationary scenario predicts
stochastic contributions originated as quantum fluctuations during the infla-
tionary period. Other models predict a phase transition in the cooling early
universe, producing expanding bubbles whose collisions could have radiated
a great amount of energy as stochastic gws. Another contribution could
be due to relativistic vibrations of primordial topological defects known as
“cosmic strings” [13]. Supersymmetric theories predict the primordial exci-
tation of scalar fields, also leading to stochastic gw radiation. Finally, some
models regard the universe as a (3 + 1)-dimensional “brane” embedded in
a higher-dimensional space, and it could have been coherently excited to
vibrate and give rise to a stochastic gw contribution.

Characteristics of the resulting astrophysical-cosmological stochastic gw
signal are highly uncertain, but the covered bandwidth is expected to span
several orders of magnitude (the geodesic deviation approximation can be
used to detect only the long wavelength part of the spectrum). Electro-
magnetic observations, like the CMB anisotropies and millisecond pulsar
timing, put severe constraints on the stochastic background intensity, at
least in some frequency bands (e.g. Ωgw < 10−8 at 10−8 Hz). However,
there is still much to learn about the actual gw background and the final
word can only be set by accurate observation and data analysis from future,
more sensitive gw detectors.
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Chapter 2

Experimental measurement
of gws

2.1 Measurements in modern physics experiments

In modern instruments devoted to experimental physics, it has become com-
mon practice to represent the measured observable quantities in the digital
domain, that is, as a finite set of finite-precision numbers. This choice has a
number of advantages. For example, the digital domain is the same repre-
sentation used by modern computers, which are invaluable tools for storing
and analyzing the large amounts of data produced by the instruments. Once
the measured data have been stored, filtering and analyzing it can be done
straightforwardly through sophisticated digital signal processing techniques.
These algorithms can be applied to the original data even multiple times and
with different setups, allowing deep and differentiated analyses which can
even run concurrently. In fact, the digital domain allows to store and re-
trieve information with minimum or no alteration at all, provided that the
initial analog to digital conversion is performed with sufficient accuracy.

Modern gw detectors make no difference [14]. The mechanical or optical
analog and time-dependent output of a gw detector is usually converted to
a voltage or current by an opportune transducer, then amplified and finally
fed to an analog-to-digital converter (ADC), which samples it at discrete
time steps and outputs a finite-precision number x[j] for each step, where
j is an integer. The time series is possibly pre-processed and finally stored
for later data analysis procedures. To result in minimum alterations in the
information carried by the analog signal, the ADC should produce a number
as linear as possible with respect to the input signal. Moreover, the output
number must have a sufficient precision (i.e. number of bits) to introduce
negligible quantization noise. Finally, the ADC sampling frequency must be
high enough to include the full detector bandwidth, i.e. it must be at least
twice as large, as required by the sampling theorem.
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2.2 Gw detectors as linear systems

As discussed in chapter 1, gws are tensorial signals. However, due to the
detector design, the measurement can only output a scalar quantity evolving
in time (e.g. voltage) which is finally converted to digital samples. Therefore,
the measurement process involves an unavoidable projection of the gw tensor
h(t) against a certain detector response tensor D, so that the experimental
observable is actually sgw(t) = Dij h

ij(t). As depicted in chapter 1, this is a
linear combination of the input gw polarization amplitudes, with coefficients
(antenna pattern) fixed by the relative orientation of the wave vector and
detector geometry: the instrument responds linearly to the time dependency
of the gw amplitude.

However, it is unphysical to assume that the scalar projection sgw(t)
depicted above contributes directly to the signal available at the detector
output port. In fact, physical detectors always exhibit a limited bandwidth:
very low and very high frequency components of input signals are inaccessi-
ble to the detector output. Assuming the detector behaves as a linear and
time-invariant system, such an effect can be modeled with an opportune
band-passing frequency transfer function G(f) applied to the scalar projec-
tion sgw(t). In the time domain, the contribution of the input gw signal to
the detector output can therefore be written in terms of the convolution

sgw(t) =
∫ +∞

−∞
g(t− τ)sgw(τ) dτ =

∫ +∞

−∞
g(t− τ)Dij h

ij(τ) dτ, (2.1)

where g(t) is the time-domain filter associated with the detector transfer
function G(f) through an inverse Fourier transform. Usually, G(f) also
contains the scale factor converting the dimensionless spacetime strain to the
units of the output signal1. Though this “complete” transfer function can
usually be estimated by lumped element models or with the aid of numerical
simulations as in [47], in practice it must be evaluated experimentally by
means of some (continuous) calibration procedure, which is unavoidably
affected by errors (relative calibration errors in |G(f)| are estimated around
5–10% for current interferometers [48, 49]). Note that an ideal experimental
calibration of the transfer function should take place by feeding a known gw
input signal to the detector and measuring the output, as is usually done
in other fields of experimental physics. In the case of gw signals this is
clearly unfeasible because, as seen in chapter 1, we are unable to produce
sufficiently strong signals on Earth. Experimenters must therefore resort to
calibrated forces that mimic the gw effect expected from general relativity
[48].

The first data analysis step performed on the measured output x(t)
should be the deconvolution with the detector transfer function G(f), to
reconstruct the dimensionless spacetime strain projection sgw(t) at the de-
tector input. This is the reason why G(f) must be estimated accurately.

1We will adopt the convention of writing a generic detector-generated signal as ‘a(t)’
when its units are those of the detector output and as ‘a(t)’ when it is expressed as a
gw-like dimensionless signal at the detector input. Therefore a(t) =

R +∞
−∞ g(t− τ)a(τ) dτ .
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As the convolution plays the role of a projection, it is worth noting
that the detector acts on the input gw as a pair of independent projections:
the first converts the tensorial quantity to a scalar one, while the second
selects the finite observable band in the time-frequency plane. How these
projections operate depends on the detector characteristics.

Since in general projections involve an information loss, recovering all
the information about an unknown gw signal from the output of a single
detector is a priori impossible, i.e. a single detector can not perform the full
signal deconvolution. It will be clear from chapter 3 how a natural solution
to this problem is the exploitation of a detector network.

2.3 Sensitivity curve of a gw detector

The output of every experimental apparatus designed to study a certain
physical phenomenon is contaminated by fluctuations originated by other
physical processes. In some fields of experimental physics, the fluctuations
can be made weak enough to inflict an effectively negligible error to the mea-
sured quantity. In the case of gw experiments, signals of non-gravitational
origin continuously contribute to the detector output. However, despite the
great technological achievements of the last years, for current detectors their
magnitudes are still comparable to or greater than the expected gw signals,
so that they effectively dominate the detector output x(t) [14]. Therefore,
their characterization is of paramount importance and their presence has to
be taken into account from the design of the instrument to the final data
analysis procedures.

In general the non-gravitational contribution is stochastic and it can
be described by the statistics P (x) and by the frequency power spectrum
Sxx(f) of its fluctuations. However, it is unsuitable to give this description
directly in units of the detector output. Instead, once the deconvolution
with the transfer function G(f) has been performed on x(t), and the dimen-
sionless gw strain has been reconstructed, the non-gravitational contribution
is expressed in terms of an equivalent gw signal at the detector input. The
frequency power spectrum of the equivalent “gw noise”, defined as

Shh(f) =
Sxx(f)
|G(f)|2

, (2.2)

forms the so-called sensitivity curve of the detector (sensitivity in short),
a useful tool to characterize the instrument performance in the frequency
domain. In fact, being expressed in units of dimensionless spacetime strain
(per unit frequency band), it can be directly compared to hypothetic gw
signals, thus providing a first-glance estimate of the signal-to-noise ratio per
unit frequency band, namely %2(f) = |H(f)|2/Shh(f) where H(f) is the
Fourier transform of the gw signal h(t). Furthermore, the performances of
different detectors can be readily compared just by looking at their sensitiv-
ities: the lower sensitivity curve determines the more sensitive instrument
in the frequency band under consideration. Quantitatively, Shh(f) allows
to directly evaluate the variance of the fluctuations σ2 in a frequency band
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[f0, f1] by means of the integral σ2 =
∫ f1
f0
Shh(f) df . It is worth noting

that the bandwidth of any gw detector is necessarily limited, as the detector
noise overcomes any gw signal for both small and large values of f . On the
other hand, Shh(f) reaches a minimum in the frequency band where the
instrument has its highest sensitivity. This is evident from figure 2.1, show-
ing the theoretical sensitivity curves of some existing and future detectors,
calculated by superposition of the modelled noise contributions.

In general, fluctuations affecting the detector performances can be grouped
into two classes by considering their physical origin: spontaneous (e.g. ther-
modynamical) fluctuations and signals due to the interaction of the detector
with its physical environment. As the following subsections will show, this
separation is justified by important differences between the two families.

2.3.1 Intrinsic noise from the fluctuation-dissipation theo-
rem

According to thermodynamics, physical observables of any macroscopic sys-
tem at finite temperature T > 0 are affected by spontaneous, stochastic
fluctuations around their mean values [50]. Of course, a measurement in-
strument is a physical system at finite temperature on its own, and its output
x(t) clearly represents a physical observable. Therefore, x(t) is affected by
stochastic fluctuations n(t), superimposed to the contribution we want to
measure and originated from the instrument itself. This contribution is gen-
erally called the intrinsic noise of the instrument. In current gw detectors,
gw signals are expected to be of the same order of magnitude of intrinsic
fluctuations [14]. The accurate characterization of such fluctuations, in par-
ticular the study of their power spectrum Snn(f) and statistical distribution
P (n), is therefore of paramount importance.

For an isolated system at thermodynamical equilibrium, a very general
result known as the fluctuation-dissipation theorem [50] states that Snn(f)
is determined by the system generalized susceptibility to external stimuli
G(f) through

Snn(f) ∝ kT

f
=[G(f)], (2.3)

where k ' 1 · 10−23 J K−1 is the Boltzmann’s constant (actually, eq. 2.3
is the classical limit kT � hf of a more general relation, valid also in the
quantum regime). Applying eq. 2.3 to the gw case, G(f) represents nothing
more than the detector transfer function, which transfers the effect under
measurement (gws) to the output observable x(t). As the imaginary part
of G(f) describes how the thermodynamical system dissipates the energy
introduced by the external force, fluctuations are therefore essentially de-
termined by the detector dissipation mechanism. Moreover, the stochastic
process n(t) has zero mean by definition and it is stationary, i.e. it retains the
same statistical properties over time. An evident consequence of eq. 2.3 is
that the intrinsic noise reduction requires lowering the detector temperature
and limiting its dissipations as much as possible. The fluctuation-dissipation
theorem, and in particular eq. 2.3, play an important role in calculating the
theoretical sensitivity curves shown in figure 2.1. The difference between
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elled sources [15, 16]. On the bottom, real sensitivity curve for the VIRGO
interferometer [16]. Deviations from predictions are evident.
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AURIGA and the other curves reflects the deep differences in the trans-
fer functions of resonant bars and interferometers, notably the much larger
bandwidth available with interferometers.

For isolated systems at equilibrium, the probability density P (n), re-
garded as the distribution of n(t) over the ensemble of systems at a fixed
time instant, can also be predicted [50]. In fact, if x is a classical physical
observable (i.e. quantum effects can be neglected) then its fluctuations about
its mean value obey P (n) = aeS(n), where a is a normalization constant and
S is the entropy of the system regarded as a function of n. The entropy is
clearly maximum when n equals its mean value 0. Then, if the fluctuations
are small, we can expand S(n) ' S(0)− b n2/2, yielding

P (n) = a′ e−b n2/2 (2.4)

which means that small fluctuations follow the Gaussian distribution when
the detector is in thermal equilibrium.

The approximations that x behaves classically and that its fluctuations
are small do generally hold quite well for gw detectors. However, whether
such detectors can be considered isolated and in thermodynamical equilib-
rium is a much more delicate issue. The fluctuation-dissipation theorem and
the Gaussian distribution may not hold strictly, i.e. they may apply only in
limited frequency bands and for limited time intervals. Consequently, the
validity of their predictions has to be verified continuously during the oper-
ation of the detectors. In practice this is done by comparing the estimated
sensitivity curves with the theoretical models and monitoring the noise prob-
ability distribution. What is found is that the predictions do actually hold
in limited frequency bands and time intervals, and that the intrinsic noise is
a quasi-stationary process, i.e. its statistical parameters vary with time on a
very long time scale (hours or more). There are indeed important deviations
from the predictions, clearly incompatible with the spontaneous fluctuations
of the detectors (see for example the real VIRGO sensitivity curve in fig-
ure 2.1). These contributions represent the other class of non-gravitational
signals affecting the detector output.

2.3.2 Spurious signals from the external environment

As gws manifest themselves as a very weak mechanical effect, it is impor-
tant to isolate the detectors from external, non-gravitational forces. At the
same time, as the effect is finally converted to an electrical signal, no im-
portant coupling to external electromagnetic sources should exist. However,
despite the technological achievements, it is practically impossible to com-
pletely decouple a detector from the external environment and regard it as
an isolated system. Therefore, its output observable x(t) will be also con-
taminated by contributions from external forces, acting independently from
the effect under measurement [14]. Unlike the thermodynamical fluctua-
tions of the instrument, however, these “disturbances” or spurious signals
do not follow a universal model, because they are associated with differ-
ent physical phenomena bearing different couplings to the detector and so
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they depend on the environment and on the detector design and construc-
tion. As anticipated, they are incompatible with the description given by
the fluctuation-dissipation theorem. Even if some of these effects can be
modelled, the superposition of all spurious signals affecting a detector rep-
resents effectively a non-stationary process s(t) whose statistics and power
spectrum are very complex and poorly predictable.

It is worth listing some of the most prominent examples of spurious
signals affecting current gw detectors.

• Seismic vibrations and acoustic noise, transmitted to resonant masses
and interferometer mirrors through the mechanical suspension systems
[72].

• The so-called Newtonian noise, i.e. the indirect sensing of nearby mo-
tion through the modulation of the static gravitational field. Ground-
based interferometers are particularly affected by this problem, which
represents a severe low-frequency limit (∼ 10 Hz) for any gw obser-
vation with Earth-based instruments and can be defeated only with
space-borne detectors like LISA [29].

• Harmonics from the power grid, coupled electrically to the detector
electronics. They can be noticed in the power spectrum of the de-
tector output as sharp spectral peaks at multiples of the fundamental
frequency (50 or 60 Hz).

• Cosmic rays, interacting thermo-mechanically with the large mass of
resonant detectors. They contribute to the output as short transients
[51].

• Creep phenomena in the detector assembly, e.g. due to the relaxation
of displacements and defects in the bulk of the suspensions. They
contribute to the detector output as short bursts.

• Rings and fluctuations from the active control systems used by inter-
ferometers to operate correctly.

Many of these phenomena, especially seismic vibrations and disturbances
from the power grid, are subject to anthropogenic trends, as they are due
to human activities that strongly exhibit the day-night periodicity. These
modulations can be indeed observed in the measured signals.

On the one hand, the practical consequence of spurious signals is that the
real sensitivity curve of a detector will exhibit excess of noise with respect
to the purely intrinsic component predicted by the fluctuation-dissipation
theorem (see the right plot of figure 2.1). On the other hand, the statistic
of the non-gravitational signal will be distorted from the predicted Gaus-
sian distribution. In fact, while strong or simple spurious signals can be
easily identified and removed by opportune signal monitoring, conditioning
and veto procedures [52, 53] (e.g. simple band-stop filters around power grid
harmonics), weak disturbances tend to confuse among the intrinsic fluctu-
ations, effectively altering the statistic of the intrinsic noise and causing
unpredictable deviations from the expected Gaussian shape.
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Due to their complexity and lack of accurate models, spurious signals
represent therefore a major problem for gw experiments [14]. In fact, unless
the time-frequency signature of a gw signal is strong enough to be unambigu-
ously distinguishable, it is very difficult to reliably assess the gravitational
origin of any signal with a single detector. Data analysis procedures must be
robust enough to recognize true gw signals and efficiently reject the spurious
instrumental artifacts.

2.4 Complete output of a gw detector

Summarizing, if we assume the detector model discussed in this chapter, we
can write the output signal as the superposition of gws, spurious signals and
intrinsic noise,

x(t) = sgw(t) + s(t) + n(t). (2.5)

After the deconvolution with the calibrated transfer function G(f) we have

x(t) = sgw(t) + s(t) + n(t) =
= Dij h

ij(t) + s(t) + n(t) =
= h+(t) F+(ϑ, ϕ) + h×(t) F×(ϑ, ϕ) + s(t) + n(t), (2.6)

i.e. a direct estimate of the projected gws, albeit corrupted by noise and
spurious signals. Eq. 2.6 will be the basis for discussing the data analysis
procedure.
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Chapter 3

Data analysis in a detector
network

3.1 Signal properties and data analysis require-
ments

To study gw bursts with the available samples {x} = {x[j]} = {x(jts)}j∈Z
of the reconstructed signal 2.6, where ts is the sampling time, data analysis
procedures have to be defined. Such procedures depend on the properties of
gw bursts, noise, and spurious signals. Let us make these properties more
explicit.

Gw bursts are well approximated by plane waves with an associated
source direction (ϑ, ϕ) in the celestial sphere and two associated polariza-
tion amplitudes h+(t) and h×(t). As discussed in chapter 1, the main prop-
erties of h+(t) and h×(t) are the transient character and the short time
scale, namely 101–10−3 s. As there is no control on the signal source, the
burst direction, time of arrival and exact h+(t), h×(t) waveforms are not
known. Moreover, due to the source distance and intrinsic gw weakness, we
expect a low signal-to-noise ratio (SNR) and a low probability of intense
burst generation. Then, while x(t) is dominated by the detector noise n(t),
bursts are immersed in the noise and sparse, i.e. there is a negligible proba-
bility that two strong bursts excite the detector at the same time. Finally,
due to the band-limiting effect of the gw detector discussed in chapter 2,
the burst waveforms can be considered “physical” (i.e. L2) signals, with no
discontinuities and with a finite signal energy

hrss =
[∫ +∞

−∞
h2

+(t) + h2
×(t) dt

] 1
2

(3.1)

which should not be confused with the physical energy carried by the gw
burst, proportional to

∫ +∞
−∞ ḣ2

+(t) + ḣ2
×(t) dt.

The noise n(t), as described in chapter 2, is a quasi-stationary, Gaussian
and zero-mean random process with a given spectral power density Snn(f).
Experience shows that, for actual gw detectors, the non-stationarity can only
be noted on time scales much longer than gw bursts, so the noise is effec-
tively stationary to a good approximation. On the contrary, Gaussianity—a
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strongly desirable property—can only be achieved after the application of
suitable pre-conditioning procedures to the data, i.e. the selection of time
intervals and frequency bands where the Gaussian approximation holds to a
desired extent. The price to pay is the effective reduction of duty time and
frequency band available for gw searches.

In chapter 2 we also pointed out the difficulty to give accurate models
for all spurious signals. Thus we must expect the presence in s(t) of non-
gravitational transients sharing the properties of gw bursts, notably the
unknown arrival time, sparsity and finite energy. Such signals are indeed
found in current detectors—either resonant [54] and interferometric [53]—
and are generally called glitches.

The available data are therefore a set of N samples (time series) con-
taining Gaussian noise and, occasionally, unknown transient signals of either
gravitational or instrumental nature. It is common practice to split the long
time series (which, possibly, lasts for months) into smaller time windows of
short duration (data sets) to better fit computational needs and guarantee
transient signal sparsity and noise stationarity in each data set. Thanks to
signal sparsity, these data sets can then be analyzed independently, a fea-
ture useful, among other aspects, for parallelization. In the following, the
discussion will only involve a single data set {x} = {x[j]}Nj=1 and N will be
the number of samples per data set.

Signal sparsity entails that we do not know a priori whether each data
set contains a signal (either a gw burst or glitch) or only the detector noise.
The first data analysis step must therefore establish the presence of a signal
in the detector noise, i.e. it must perform the detection of candidate events
[54].

Among the data sets identified as containing a signal, we must select
the ones containing true gw burst events and reject those containing instru-
mental glitches. This step is the discrimination of gw signals, also called
the veto of spurious events [54]. The discrimination should take place by
recognizing the distinctive properties of gws, e.g. their speed of propagation,
TT character and physical symmetries. As already stressed in the previous
chapter, such recognition is only possible by jointly analyzing the data sets
produced by different detectors, because the data set of a single instrument
only carries incomplete information about the gw burst. It is worth notic-
ing that, to maximize the efficiency of the analysis, the discrimination step
should be part of the detection one. That is, an ideal gw detection algorithm
should be immediately sensitive to true gws and equally insensitive both to
noise and spurious signals. Such goal is clearly impossible to realize when we
independently search for transient signals in the outputs of each detector.

Due to the finite SNR, the effect of the above steps can not be free from
errors, and some of the selected data sets will not contain true gw bursts
(background events). To assess both the true gw detection and the reliability
of the data analysis procedure, the rate of these background events must be
estimated with additional steps [54]. Usually, this involves the cancellation
of the distinctive properties of gw signals, which can be done in different
ways, to create an ensemble of “null” data sets. The background rate is
then estimated by the simple re-application of the same data analysis to the
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null data.
Once the presence of a true gw signal has been decided in a data set

at a given confidence level, the final step is the estimation of the signal
parameters, e.g. the source direction (ϑ, ϕ) and the h+(t), h×(t) waveforms.
In other words, the full reconstruction of h(t) can be effectively performed.
As discussed in chapter 2, this is another step that only makes sense by
considering the data sets from more detectors.

3.2 Signal detection as hypothesis testing

The presence of a signal alters the statistical properties of the data set, i.e. it
changes its probability distribution. Therefore, detection algorithms are usu-
ally discussed in the so-called hypothesis testing framework [55]. Given the
available data samples {x}, one formulates the null hypothesis H0 (no signal
is present and {x} represents noise samples) and the alternative hypothesis
H1 ({x} contains noise and signal). Then, the null hypothesis is either ac-
cepted or rejected by means of a suitable decision rule. This rule consists in
checking whether the data fall into a rejection region R ⊂ RN , defined by
means of some functional of the data set S (statistics). The decision rule is
then

If {x} ∈ R accept H1, otherwise if {x} /∈ R accept H0.

H0 is a simple hypothesis, i.e. it specifies a unique probability distribu-
tion P0({x}) for {x}, e.g. the normal distribution for Gaussian noise. On
the contrary, as H1 depends on the knowledge of the signal, generally it is a
composite hypothesis, that is, it identifies under the generic name “signal” a
number of different probability distributions P1({x}) for {x}. For instance,
if we deal with signal templates, different distributions arise from different
values of the template parameters.

Although S may be arbitrarily complicated, it usually reduces to a simple
real map S : {x} → R. The rejection region is then defined by comparing
S({x}) with a threshold T , namely RT = {{x} | S({x}) ≥ T}. In other
words, the detection is equivalent to simply thresholding a real statistics of
the data.

The statistical nature of the noise implies that we are unable to tell for
sure whether the data contain a signal or not; instead, we can only assign
a probability that {x} contains only noise or noise and a signal. Therefore,
the decision rule is unavoidably prone to errors. In particular, its outcome
may be wrong in two cases:

• the null hypothesis is rejected when there is only noise (false alarm);

• the null hypothesis is accepted when there is a signal (false dismissal).

Conversely, the decision is correct whenever

• the null hypothesis is rejected when there is a signal (true alarm);

• the null hypothesis is accepted when there is only noise (true dis-
missal).
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Table 3.1: possible outcomes of a detection algorithm.

The possible outcomes are summarized in table 3.1.
Each of the four cases has an associated probability of occurrence, and

one defines the false alarm probability pfa (probability to decide that the
signal is present when actually it is not) and the detection probability or
efficiency pd (probability to decide that the signal is present when it is),
namely

pfa = P ({x} ∈ RT | H0)
pd = P ({x} ∈ RT | H1). (3.2)

Clearly, both pfa and pd are functions of T .
The performance of the decision rule as T varies is conveniently repre-

sented by the receiver operating characteristic (ROC), the parametric curve
defined by (pfa(T ), pd(T )). Usually, the ROC is plotted like in figure 3.1.
On the one hand, an ideal decision rule that always takes the correct de-
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cision is represented in the ROC plane by the point (0, 1). On the other
hand, the most ineffective rule takes a random decision independently from
the data, tracing the bisector of the ROC plane. ROC curves of realistic
and useful rules lie within the triangular area delimited by these two ex-
treme cases. ROC curves below the bisector identify rules that consistently
take the wrong decision; by just inverting the logic of such rules one gets
consistently correct decisions.

The desirable requirement of lowering the false alarm probability and
raising the efficiency can not be attained simultaneously to an arbitrary
degree. In fact, the former is obtained by raising the detection threshold
T , but this unavoidably precludes the latter. This can be seen in the ROC
plane by noting that the ROC curve never comes arbitrarily close to the
point (0, 1). Consequently, one has to pick a compromise by tuning T .

In general, however, different decision rules (or equivalently, different
rejection regions or statistics) produce better or worse compromises and
one looks for the “best” one for each given data set. There are several
criteria to define the meaning of “best”, each with a different objective. For
instance, one may be interested in robustness against noise; or, it may be
best to minimize the chance of false alarms. One of the most widely used
in gw searches it the well-known Neyman-Pearson criterion: once pfa(T ) is
determined by fixing T , choose the rejection region that maximizes pd(T ).
In other words, one fixes the chance of getting false alarms to an acceptable
level, then looks for the rejection region that attains maximum efficiency.

If both H0 and H1 are simple hypotheses, an explicit solution to the
Neyman-Pearson criterion is provided by the Neyman-Pearson lemma: given
pfa, the maximum efficiency is attained by thresholding the statistics

Λ({x}) =
P1({x})
P0({x})

(3.3)

which is the well-known likelihood ratio. Detection through the rejection
region RT = {{x} | Λ({x}) ≥ T} is then called the likelihood ratio test. Ac-
tually, the Neyman-Pearson lemma also holds if H1 is a one-sided composite
hypothesis, i.e. P1({x};α) is a monotonic function of a single parameter
α > 0 or α < 0. However, when H1 is composite and P1({x};θ) is an ar-
bitrary function of a parameter vector θ, the optimality of a test becomes
difficult to define: there can not be a single criterion of optimality. For in-
stance, one may want to maximize the average efficiency over the parameter
space Θ, or maximize the minimum one, or one may ask for the minimum
variation of the efficiency over Θ. Yet, the Neyman-Pearson lemma can be
straightforwardly extended to this case by using the maximized likelihood
ratio

Λ({x}) =
maxθ∈Θ[P1({x};θ)]

P0({x})
. (3.4)

P1({x};θ), evaluated at the measured data and regarded only as a func-
tion of θ, represents the so-called likelihood function. The resulting test is
no longer necessarily optimal, but in practice gives generally good efficien-
cies, and reduces to the likelihood test when the definition of “optimum” is
unambiguous.
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In the following, we will review a number of interesting detection algo-
rithms and their application to gw searches.

Among the most famous detection algorithms is the matched filter one
[55]. Suppose that the signal is known up to a scale factor A and x[j] =
Af [j] + n[j], where f [j] is the known signal waveform and n[j] is white
Gaussian noise with standard deviation σ. According to the matched filter
theory, A can be estimated through

A({x}) =

∑N
j=1 x[j]f [j]∑N
j=1 f [j]2

, (3.5)

which can be shown to minimize the mean square error between the mea-
sured data x[j] and the signal estimate Af [j]. The matched filter detec-
tion rule puts the threshold on A. On the one hand, H1 is a one-sided
composite hypothesis, so the Neyman-Pearson lemma holds; on the other
hand, the likelihood ratio can be written as Λ({x}) = exp(A2/2σ2

A) (where
σ2
A = σ2/

∑N
j=1 f [j]2 is the variance of A) and thus a threshold on A is

equivalent to one on Λ. In other words, thresholding A is equivalent to per-
forming the likelihood ratio test. Consequently, the matched filter detection
rule is the most efficient one, for a given pfa(T ). Another important feature
is that both pfa(T ) and pd(T ) have exact expressions, which means that
the ROC curve can be known analytically. Clearly, this optimum method is
of poor practical utility to detect gws, because the signal waveform is not
known. Still, it is useful as an asymptotic limit on ROC curves of realistic,
less efficient gw detection algorithms.

A generalization of the matched filter detection rule allows one to lack
the knowledge about the signal arrival time. This immediately turns H1

into a composite hypothesis and the Neyman-Pearson lemma is no longer
applicable. One can then resort to eq. 3.4 and get, in general, good efficien-
cies, though the algorithm false alarm probability and efficiency can only be
estimated by means of Monte Carlo simulations.

A further matched filter generalization relaxes the required knowledge
of the full signal waveform. The test must be performed by using eq. 3.4
and maximizing over a bank of waveforms {fθ[j]}θ∈Θ (templates), where the
parameter vector θ labels each waveform of the bank. This test is used to
look for gw signals that can be given exact waveforms; the typical example
are inspiralling compact binaries.

To detect transient signals without templates, another efficient algorithm
is the power filter. Suppose that we know how to localize the power of
the transient signal in the time-frequency plane by convolving x[j] with a
suitable filter q[j]. Then, the local power Eq =

∑N
j=1(q ∗ x)[j]2 can be

shown to be an optimal statistics, a threshold on Eq being equivalent to the
likelihood test [56]. In practice, especially in the gw case, the signal time-
frequency support is poorly known and one does not know how to build
the localizing filter. In this case the filter is omitted and instead the total
power E =

∑N
j=1 x[j]2 can be used as the statistics. Optimality is lost and

the resulting efficiency is rather low, but the method drops any assumption
about the signal waveform, at least as long as it is fully included in the
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Table 3.2: possible outcomes of a genuine gw detection algorithm, assuming
signal sparsity. “Alarm” is to be intended with respect to gw detection only.

data set. For this reason it makes little sense to use less efficient detection
algorithms, and the total power test becomes interesting as a lower bound
to ROC curves of other statistics.

The search for powerful tests should therefore focus on the region of the
ROC plane between the ROC of the matched filter and the one of the total
power.

3.3 Discrimination and multiple hypotheses test

In the gw case, the spurious signals represent an effective additional source
of transients in the data sets, and the general two-hypotheses framework
discussed in the previous section must be extended to tackle this problem.
We identified two approaches.

A straightforward way is simply to treat spurious transients as belong-
ing to H0 (e.g. they are part of the detector noise), thus maintaining the
structure of the hypothesis test. Then H0 becomes a composite hypothesis
on its own. Unfortunately, the identification of efficient detection rules be-
comes a difficult task, as neither the probability density associated with H0

(a superposition of noise and poorly-modeled spurious signals) nor the one
associated with H1 (determined by gws) are known accurately.

Another, more general, approach is to extend table 3.1 to take into
account spurious signals. By invoking signal sparsity, each data set may
contain either a gw burst, a glitch or only noise; consequently,H1 can be split
into a “gw” alternative hypothesis Hgw and a “spurious” one Hs (table 3.2).
The problem is then complicated to a multiple hypothesis test [55], which
may involve more than a single detection threshold and whose performance
can not be characterized by a single ROC curve. Nevertheless, thanks to
signal sparsity, one may separately compute “gw” and “glitch” ROC curves,
representing the performance of gw and glitch detection in the noise, or a
ROC curve may be computed for distinguishing Hgw from Hs.

Ideally, the analysis algorithm should be able to efficiently distinguish
among the three hypotheses. This would allow one to detect gws and, at the
same time, to monitor the network instrumental glitches, achieving the most
complete information about both the physical phenomenon under study and
the measurement instrument represented by the network.
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3.4 Networks of gw detectors

With a network of M > 1 detectors, the available data set is extended from
a scalar time series {x} (N × 1 samples) to M time series, conveniently
represented as a discrete M -vector {x} (N ×M samples). We identify a
general data analysis procedure for accomplishing the goals discussed in the
previous sections. It is sketched in figure 3.2, where we have also included
the preliminary calibration step for completeness.

The basic idea behind such analysis pipeline is to overcome our inability
in recognizing the gw properties in the single outputs by constructing a num-
ber of synthetic virtual channels (or data sets) out of {x}. These channels
are then used to separately accomplish each goal of section 1, i.e. detection,
discrimination and parameter estimation. For this reason, they are grouped
as “detection”, “discrimination” and “estimation” channels, though they
may be many more streams of information.

The pre-conditioning step represents the tasks performed locally to each
detector to validate the assumptions made about the noise, e.g. Gaussianity.
As anticipated, these may include the removal of time epochs and frequency
bands where the detector output x(t) is not suitable for gw searches, for
instance because it is dominated by the spurious contribution s(t), thus
bearing a complex and unpredictable behaviour. Pre-conditioning may also
include whitening procedures to remove the noise correlation. Nevertheless,
it must be stressed that pre-conditioning tasks performed locally to each
detector are likely to impair the further analysis. For instance, removing
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Figure 3.2: schematic of a data analysis pipeline for identifying gw bursts
with a network of detectors.
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time epochs and frequency bands effectively reduces the data available for
the analysis, unavoidably reducing the chance of detecting genuine gws.
Any operation performed locally should be avoided as much as possible or
delayed at later stages in the pipeline, i.e. within the synthesis stage itself.
In fact, this allows one to carry out more targeted conditioning, taking into
account the physical properties of gws which can only be appreciated at the
synthesis stage.

The synthesis algorithm is the set of operations that define the synthetic
output channels and it is the part of the pipeline where the optimization
should concentrate. The detection channel contains information that allows
one to distinguish H0 from Hgw and Hs. For example, it may represent
the instantaneous energy of the network sample {x}, to perform a threshold
detection similar to the total power test. The discrimination channel should
gather information distinguishing Hgw from Hs. For instance, it could con-
tain the trace of the gw tensor tr[h(t)], which must be 0 assuming general
relativity. A threshold crossing on such a channel would then rule out Hgw
and mark (veto) the data set as contaminated by a glitch. Together, the
detection and estimation channels assess the presence of a genuine gw burst
in each data set, telling Hgw from either H0 or Hs. Finally, if this is the case,
the estimation channel reconstructs the parameters of h(t) or, equivalently,
its time-dependent components.

To assess the effectiveness of the full analysis pipeline, background esti-
mation can then be accomplished by creating the ensemble of null data sets
and by running the same pipeline on them. Thanks to the distinctive prop-
erties of gws, the null ensemble can be easily produced in different ways. An
usual procedure is shifting the M detector outputs by different time delays,
larger than the time taken by gws to travel the Earth diameter (which is
2τE = 2rE/c ' 4 · 10−2 s, where rE ' 6 · 106 m is the mean Earth radius).
The phase information of any possible gravitational signal is then destroyed,
as physically gws can only contribute to each detector within a time window
not larger that 2τE . Another approach is the so-called method of surrogate
data: the removal of any phase coherence takes place by transforming the
data sets to the frequency domain ({x} → {X}), then randomizing the phase
spectra—by setting {arg(X)} to M random numbers in the range [0; 2π]—
and finally transforming back to the time domain ({X} → {x}). Evidently,
the method of surrogate data has the property of exactly conserving the
power spectra of the data sets.

A desirable property of an analysis pipeline is the ability to estimate
the background for each data set, e.g. by creating the ensemble of surrogate
data out of each single data set. In other words, the analysis should not
need data in a much longer time interval than the duration of a single data
set. This feature is important for assessing the performance of the network
and possibly to study its time dependence. In fact, it represents an ex-
tremely powerful proof of the robustness against non-gravitational spurious
disturbances with annual, monthly or even daily periodicities.

Calibration errors in the transfer functions of the detectors, both in
phase and amplitude, clearly limit the effectiveness of any analysis pipeline,
e.g. because they tend to disrupt the physical signatures of gws. Therefore, it
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is also important to characterize and improve the robustness of the analysis
against such errors.

We now briefly review the burst data analysis techniques currently being
used or investigated.

Data produced by the resonant-bar observatory is being analyzed by the
International Gravitational Event Collaboration (IGEC) [22, 23]. The anal-
ysis procedure first performs individual detection on the single-detector data
sets, in the framework of hypothesis testing discussed above. Single-detector
alarms are defined through a modified matched filter decision rule, where the
filter is matched to the known, narrow-band detector impulse response g(t).
This statistics performs well for δ-like gw bursts with a constant Fourier
transform over the detector bandwidth. Individual event lists then undergo
a coincidence search, looking for events occurring in more detectors within
short time windows. The rate of such coincidences is estimated. The back-
ground coincidence rate is then estimated by rigidly shifting single-detector
event lists by unphysical delays (i.e. larger than 2τE) and repeating the co-
incidence search. An excess of coincidence rate in the non-shifted event lists
can be associated with gw bursts. The IGEC analysis does not actually fit
the scheme in figure 3.2, as there is no synthesis of virtual channels and only
partial information about the gw parameters can be reconstructed, namely
the burst amplitude and time of arrival.

Indeed, such a method has a number of drawbacks. It requires a net-
work of aligned detectors, because they must receive an identical gw signal
sgw(t). Then, as the detection process is performed independently on each
instrument, the global detection efficiency can be written as εnet =

∏M
m=1 εm,

where εm is the detection efficiency for detector m. εm < 1 implies εnet <
min(εm), i.e. the global efficiency is bounded from above by the less effi-
cient detector. Furthermore, this method exploits neither the physical gw
properties nor the phase coherence of gw signals—for this reason it is called
an incoherent search—but it rather looks for coincident excitations of sim-
ilar instruments. Thus, its discrimination power is essentially based on the
hypothesis that occurrences of spurious signals in one detector are uncor-
related with those in the other detectors. This is a limitation because, as
discussed later, the network delivers much more information.

Interferometers have a large bandwidth with respect to resonant bars.
Hence, detection of unknown signals through filters matched to the instru-
ment impulse response is no longer effective. However, the coincidence
search depicted above can be extended to networks of interferometers by
means of time-frequency decompositions and sub-optimal power filters (or
similar statistics with minimal assumptions about the signal) [57, 58]. One
of the main implementations of such a search is the WaveBurst algorithm
[59]. It works by first finding clusters of high-energy coefficients in a time-
frequency decomposition of the data sets, depending on a preliminary thresh-
old. Then, it looks for clusters in the different time-frequency maps that bear
consistency within a suitable time window. Finally, a cluster significance is
evaluated and compared to a second threshold to attain the final event de-
tection. Clearly this technique still represents an incoherent search and
thus carries similar drawbacks, notably the requirement of aligned antenna
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patterns.
In the late years, the interest of the gw community has been shifting

towards coherent burst analysis methods. The name comes from the fact
that such methods exploit the (expected) strong phase coherence of the gw
waveform in order to recognize the presence of the burst in the outputs of
the M detectors. The M data sets are merged into one or more statistics
where the detection is then performed, rather than carrying out M indepen-
dent tests and then combining the outcomes with logical operations. Thus,
the efficiency limit of coincidence-like incoherent searches should be avoided.
Moreover, coherent methods can be designed to take into account the dif-
ferently aligned detector antenna patterns. This allows one to use coherent
methods with networks of arbitrarily aligned detectors. Finally, only the co-
herent combination of the data sets can estimate the full signal parameters.
Therefore, a coherent analysis is a mandatory part of figure 3.2.

A straightforward procedure to enforce the phase coherence of the sig-
nal is a direct cross-correlation between the detector outputs. The cross-
correlation allows one to build powerful statistics, such as the r-statistic, to
reject non-gravitational events produced by noise and glitches [62] and also
makes it possible to localize the gw source in the sky [63].

Coherent methods can also be constructed by applying the maximum-
likelihood principle to the network response, thus constructing a “network
likelihood functional” that intrinsically takes into account the cross-correlation
between different detectors [64]. Such methods can reconstruct the source
direction as well. Although they can be used both with aligned and mis-
aligned detectors, it has been demonstrated that in the latter case they
are very sensitive to an issue known as two-detector paradox. This prob-
lem arises from a subtle degeneracy in the detector network, that we will
discuss later, and tends to produce unphysical solutions that have to be
carefully excluded by regularizing the problem. A practical implementation
of maximum-likelihood coherent search is an extension of the WaveBurst
algorithm that realizes a likelihood-based coherent detection in the time-
frequency domain [65].

Coherent analyses have also been defined by means of constructing suit-
able linear combinations of the outputs, that either estimate or cancel the
gw polarization amplitudes. On the one hand, the former combinations can
be used for the reconstruction of the signal waveforms h+ and h× [60]. On
the other hand, those that cancel the gw contribution, commonly called null
streams, can be used to infer the source direction [60] and at the same time
to efficiently reject instrumental glitches [61]. This kind of coherent analysis
best matches the scheme in figure 3.2. It is promising because it directly
tackles the so-called gw inverse problem that will be discussed in the rest of
the section.

In order to discuss realistic detector networks, we report in table 3.3 the
relevant geometric parameters of the currently operating interferometers,
i.e. their geographical location and arm orientation [66]. The locations are
given in geocentric coordinates, where the origin is the center of Earth, the
z axis points towards the North pole, the x axis is directed towards the
Greenwich meridian and the y axis is so that the coordinate system is right-
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Detector ϑ ϕ α1 α2

VIRGO 46.3333 10.50 70.5674 160.5674
LIGO Livingston 59.437 269.266 197.7165 287.7165

LIGO Hanford 43.545 240.592 125.9994 215.9994
GEO600 37.7549 9.8072 21.6117 115.6117

TAMA300 54.3264 139.5392 180. 270.

Table 3.3: geometric parameters of the currently operating interferometers.
(ϑ, ϕ) is the detector location in geocentric spherical coordinates. α1 and
α2 are the orientations of the two arms with respect to the local East. All
values are in degrees.

handed. Spherical coordinates are used, where 0◦ ≤ ϑ ≤ 180◦ is the latitude
(0◦ at the North pole, 180◦ at the South pole) and 0◦ ≤ ϕ < 360◦ is the
longitude (0◦ is the Greenwich meridian). To provide a first-glance look at
the locations and relative orientation of the detectors, we report in figure
3.3 their scattering on the Earth surface and their polarization independent
antenna patterns F̂ (ϑ, ϕ). It is worth noticing the similar orientation of the
LIGO instruments, which allows one to perform incoherent burst searches in
their data sets. The tiny misalignment of the two detectors is an unavoidable
effect of the Earth curvature.

3.4.1 Network response to gws

According to eq. 2.6, the outputs of an M -detector network can be written
in the time domain as

xm(t) = h+(t+ τm(ϑ, ϕ)) F+
m(ϑ, ϕ) +

+ h×(t+ τm(ϑ, ϕ)) F×m(ϑ, ϕ) +
+ sm(t) + nm(t), (3.6)

where the index m = 1 . . .M labels each detector. The time delays τm(ϑ, ϕ)
account for the different detector positions on the Earth surface, which lead
to different burst arrival times on each detector. Setting the origin at the
center of the Earth and assuming that gws propagate at speed c,

τm(ϑ, ϕ) = −rm · k(ϑ, ϕ)
c

, (3.7)

where rm is the position vector of detector m and k(ϑ, ϕ) is the wave vector
given by eq. 1.12. As an example, we sketch in figure 3.4 the simulated
response of the LIGO-VIRGO network to a sample gw burst.

Eq. 3.6 can be recast in vector/matrix form as

x(t) = F (ϑ, ϕ)h(t) + s(t) + n(t), (3.8)

where

h(t) =
[
h+(t)
h×(t)

]
, s(t) =

 s1(t)
...

sM (t)

 , n(t) =

 n1(t)
...

nM (t)

 . (3.9)
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Figure 3.3: on the top, location of the interferometers on the Earth surface.
From left to right we find VIRGO, GEO600, TAMA300, LIGO Hanford and
LIGO Livingston. Below, sky maps of their polarization-averaged antenna
patterns F̂ (ϑ, ϕ). Note the characteristic four zeroes of each interferometer
and the similar orientation of the two LIGO instruments.
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Figure 3.4: simulated response of the LIGO-VIRGO network to a sample
gw burst. The burst is a linearly polarized sine-Gaussian transient, coming
from the direction (ϑ, ϕ) = (59.7◦, 270◦). The two upper plots show the
true burst waveforms. The lower plots show the outputs of the interferom-
eters, contaminated by white Gaussian noise with σ = 1. Note the different
amplitudes and arrival times.
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Note that with such notation h(t) no longer represents the full gw tensor, but
merely an artificial 2-vector constructed with the polarization amplitudes.
We will make no further reference to the gw tensor as h(t) to avoid confusion.
The M × 2 matrix

F (ϑ, ϕ) =

 T1(ϑ, ϕ) 0
. . .

0 TM (ϑ, ϕ)


 F

+
1 (ϑ, ϕ) F×1 (ϑ, ϕ)

...
...

F+
M (ϑ, ϕ) F×M (ϑ, ϕ)

 (3.10)

is known in literature as the network response matrix [68]. The first, diag-
onal factor describes the time delays by means of the time-shift operators
Tm(ϑ, ϕ). Thus, it accounts for the gw propagation speed and the geograph-
ical distribution of the detectors. The second factor contains the antenna
patterns and so it encodes the angular sensitivity of the network. Equiva-
lently, extending the antenna pattern discussion of chapter 1, it represents
a manifestation of the tensor and TT characters of gws.

Such vector form of the output is interesting because it factorizes many
aspects of the network into the response matrix, underlining the linear,
algebraic nature of the problem. The whole network is regarded like a single
“virtual instrument” that responds to gws as a linear system. Moreover,
two crucial properties of gws, namely the propagation speed and tensor/TT
character, give rise to factorized contributions in the network response. This
suggests that the corresponding tests can be performed independently.

However, an important aspect of the network sensitivity is left in n(t):
the characteristics of the detector noise processes. In principle this infor-
mation can be brought back into F with a “network whitening” proce-
dure. In fact, assuming that the detector noises are stationary, so that
they are well described by their sensitivity curves and can be independently
whitened by M whitening operators Wm, one can recast the network output
as x̃(t) = Wx(t) = F̃ h(t) + s̃(t) + ñ(t), with

F̃ =

W1 0
. . .

0 WM


 T1 0

. . .
0 TM


 F

+
1 F×1
...

...
F+
M F×M


s̃(t) = Ws(t)
ñ(t) = Wn(t). (3.11)

By definition, ñ(t) now represents M Gaussian, white processes with unit
variance and thus it no longer carries information about network character-
istics. On the other hand, the new response matrix carries the information
about the frequency sensitivity of the network, as well as the angular sen-
sitivity and geographical distribution. The generalized network response
matrix takes a simple form in the frequency domain, where the time-shift
operators Tm(ϑ, ϕ) are purely phase factors and the noise whitening can be
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carried out by a normalization to the sensitivity curves:

F̃ (ϑ, ϕ, f) =


exp[i 2πf τ1(ϑ,ϕ)]√

Shh,1(f)
0

. . .
0 exp[i 2πf τM (ϑ,ϕ)]√

Shh,M (f)


 F

+
1 (ϑ, ϕ) F×1 (ϑ, ϕ)

...
...

F+
M (ϑ, ϕ) F×M (ϑ, ϕ)

 .
(3.12)

This form allows one to easily understand the consequence of including de-
tectors of different sensitivity in the network. The response of a noisy de-
tector is automatically suppressed by the first factor and vanishes in the
limit of arbitrarily large noise variance. In other words, noisy detectors are
effectively removed from the network. This justifies the intuitive idea that
including a very noisy detector in a network brings little contribution to the
solution of the problem.

As a further generalization, one may even account for slow noise non-
stationarities by using an intermediate time-frequency domain rather than
the pure frequency domain, i.e. by fully specifying the complete time-frequency
behaviour of the sensitivity curves. This would take into account, for in-
stance, an increased noise variance in some frequency bands occurring dur-
ing daytime. The resulting response matrix would then bear a complex
dependency—sky direction (ϑ, ϕ), time and frequency—which would reflect
the truly complex behaviour of the virtual instrument represented by the
network.

In the following we will omit the dependencies of F and we will also avoid
specifying if F̃ or F is being used, when such information is of secondary
importance.

The formalism introduced above suggests to define a polarization inde-
pendent “network sensitivity” as the matrix norm1 ‖F ‖. As a function of
(ϑ, ϕ), this figure of merit plays the role that F̂ (ϑ, ϕ) plays for a single de-
tector, i.e. it represents the network sensitivity to an ensemble of gw sources
with uniformly distributed polarization angles.

Intuitively, one expects that scattering the detectors on the Earth sur-
face should not affect the overall sensitivity of the network. Indeed, it can
be verified numerically that ‖F ‖ does not depend on the factor contain-
ing the time delays. This can be also seen from 3.12: the delays are just
phase factors that can not alter norms. Therefore, networks of co-located or
geographically distributed instruments have the same sensitivity (provided
the detectors retain the same orientation) although, as discussed later, the
propagation speed can only be tested by the latter setup. This stresses even
more the separation between the effect of the finite gw propagation speed
and the tensor/TT properties.

3.4.2 Inverse problem and network conditioning

Formally, eq. 3.8 represents a well-known inverse problem in presence of
noise: under the assumption that a gw is coming from a single source located
at (ϑ, ϕ), we want to estimate the unknown amplitudes h+(t), h×(t) from

1We use the induced 2-norm—the largest singular value of F .
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the measured data x(t); we are neglecting the spurious contribution for the
moment. Inverse problems are common in science and engineering [67] and
they can be attacked with a vast mathematical framework. The discussion
of the gw inverse problem is rather recent [60] and the best formalism for
its solution seems to be the Moore-Penrose inversion [68].

For 2-detector networks F is a simple 2 × 2 matrix and the inverse
problem can be immediately solved through the standard matrix inversion.
However, when M > 2, the problem is over-determined because we have
2 unknowns and M equations. As M − 2 equations represent “noisy” con-
straints, in general an exact solution for h+(t), h×(t) does not exist. Accord-
ingly, the network response is rectangular and can not be straightforwardly
inverted. Nevertheless, there are many generalization to matrix inversion
that also work for rectangular matrices, collectively known as generalized
inverses or pseudo-inverses [69]. They correspond to different ways to look
for approximate solutions (following different criteria) and thus they are use-
ful in solving the overdetermined gw inverse problem. The Moore-Penrose
inversion defines an approximate solution through the minimization of the
least-squares functional

L[h] = ‖x− Fh‖2 (3.13)

where the Euclidean vector 2-norm is used. This functional has the property
of resulting from a maximum-likelihood approach. Its minimization entails
the search for a 2-vector h that shortens the Euclidean distance between the
measured data and the network response to a gw with amplitudes given by
h itself. Variation of L[h] with respect to h+ and h× leads to the normal
equations Mh = F Tx, where M = F TF is a 2× 2 square matrix that can
be readily inverted to give the solution

h(t) = F †x(t). (3.14)

The 2×M matrix

F † = M−1F T = (F TF )−1F T (3.15)

is known as the Moore-Penrose inverse of the network response matrix. It
has the desirable property of reducing to the standard matrix inverse for
2-detector networks.

Notably, the Moore-Penrose inversion provides an unbiased estimate or
“reconstruction” of the gw amplitude: for each time instant, the expecta-
tion value over noise realizations 〈 F †x(t) 〉 equals h(t), provided that F †

is evaluated at the correct source location (ϑ, ϕ) (figure 3.5). Then, the
estimates given by F †x(t) can be regarded as synthetic “output channels”
(two for each source location) of the virtual instrument represented by the
network. It must be noted that the impulsive character of the gw signal is
never assumed in the formulation of the inverse problem: as a result, the
formalism works not only for gw bursts, but actually for gws of any kind.
The only requirement is that we have at most one point-like gw source for
each data set.

Unfortunately, however, for an arbitrary network the inverse problem
expressed by 3.8 falls into the family of ill-conditioned problems [68, 70].
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Figure 3.5: reconstruction of a simulated gw burst with the LIGO-VIRGO
network by application of the Moore-Penrose inverse F † to the data samples.
The first two plots show the true burst waveforms—a linearly polarized sine-
Gaussian transient coming from the direction (ϑ, ϕ) = (66◦, 137◦). The two
middle plots are the waveforms estimated from the noisy data, with F †

evaluated at the exact source direction. The shaded plots are the same but
using a very different direction. Note the disruption of the gw waveforms
caused by the de-synchronization of the time delays.
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Such problems are characterized by a strong instability with respect to small
variations of the available data, e.g. they are extremely sensitive to noise or
rounding errors. In the gw case, for some locations of the celestial sphere
the network response matrix may suffer a subtle singularity known as rank
deficiency. The question is that, for those values of (ϑ, ϕ), the range vectors
of F , represented by its columns

F+ =

 F
+
1
...
F+
M

 F× =

 F
×
1
...
F×M

 , (3.16)

become nearly proportional. This implies that F , whose nominal rank is
2, is very close to a rank-1 matrix and thus its inversion leads to unstable
solutions: small perturbations in x(t) are greatly amplified by F †. The
singularity can be made more explicit by noting that M becomes nearly
singular as well, as it can be shown that one of its two eigenvalues approaches
0 while the other does not. Looking at the L[h] minimization, the problem
is that the network effectively does not respond to one of the components
of h: therefore, the distance is very small for a wide set of 2-vectors and
looking for the minimizing one becomes ambiguous.

Ill-conditioning is a major problem which, in the gw case, is at the
origin of a number of pathologies and singularities (like the two detector
paradox [64]) that also affect other data analysis strategies. The practical
consequence is that the gw estimate given by 3.14, though still unbiased, is
swamped by the noise fluctuations, whose variance gets strongly amplified—
even by orders of magnitude—with respect to the original noise of the de-
tectors (figure 3.6). More precisely, it can be shown numerically that one
gw polarization amplitude can be estimated with reasonable noise contam-
ination, while the other is blinded by a much large noise variance. This is
in agreement with the above consideration that the network is not sensitive
to one of the h components.
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Figure 3.6: failure in reconstructing the “cross” polarization of a simulated
gw burst that is coming from a direction with a strongly ill-conditioned
response matrix. The h×(t) estimate is totally blinded by the amplified
noise fluctuations.
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The degree of ill-conditioning of a matrix A can be conveniently de-
scribed by the condition number

cond(A) = ‖A‖ ‖A†‖. (3.17)

Perfectly invertible matrices have cond(A) = 1, while matrices close to
singularity have cond(A) � 1. Therefore, a sky map of cond[F (ϑ, ϕ)] rep-
resents another network “figure of merit”, together with the norm of the
network response matrix ‖F (ϑ, ϕ)‖ introduced in the previous section. Re-
gions in which cond(F ) � 1 are characterized by diverging noise variance
in the network output channels given by 3.14.

Several techniques have been developed to address rank deficiency and
the consequent ill-conditioning of an inverse problem. One of the most
widely used is the Tikhonov regularization [71], which has been applied in the
gw case [68]. Its essence is the modification of the least-squares functional
3.13 with the addition of a “regularizing” functional Ω[h] controlled by a
parameter γ ≥ 0,

Lγ [h] = ‖x− Fh‖2 + γΩ[h]. (3.18)

Ω[h] and its strength γ are chosen so that the resulting Moore-Penrose
inverse no longer suffers from rank deficiency. In the gw case a quadratic
form has been used for the regulator, i.e. Ω[h] = hTΩ h with Ω a suitable
2 × 2 matrix [68]. Ω can be made a function of (ϑ, ϕ), adapting it to
the direction-dependent degree of ill-conditioning. The construction of the
regularized pseudoinverse then uses Mγ = M + γΩ instead of the original
M . The role of Ω is essentially to compensate the vanishing eigenvalue of
M . The resulting Moore-Penrose inverse reads

F †γ = M−1
γ F

T = (F TF + γΩ)−1F T . (3.19)

Remarkably, Ω and γ can be chosen to attain condγ(F ) = ‖F ‖ ‖F †γ‖ = 1
everywhere, thus stabilizing the estimation of h+(t) and h×(t) with respect
to fluctuations in x(t). The practical result is that the noise variance is no
longer amplified.

Nevertheless, such correction is not for free. In fact, every regularization
procedure, by its own nature, introduces a bias in the estimation: this is
the price to pay for a stable solution to the ill-conditioned inverse problem.
As a consequence, the regularization strength γ must be tuned accurately,
reaching a compromise between instability due to noise and bias due to
regularization.

3.4.3 Actual and ideal networks

The definitions of two network figures of merit, global sensitivity and con-
dition number, immediately suggest a number of desirable properties in a
network.

1. The absence of blind directions: the regions in the celestial sphere for
which ‖F ‖ ' 0 should be small or null.
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2. The good conditioning of the response matrix, namely cond(F ) ' 1
everywhere.

3. The weak variation of ‖F ‖ and cond(F ) on the celestial sphere, i.e. iso-
tropic sensitivity to gws with uniform distribution of the polarization
angle and isotropic reconstruction ability.

4. Similar sensitivity curves Shh,1(f) . . . Shh,M (f), as very noisy detectors
are effectively removed from the network and the maximum benefit is
achieved when all detectors share approximately the same noise level in
the same frequency band (e.g. it would be pointless to build a network
of detectors with disjoint frequency bands).

We point out that the characterization provided by the “complete” figures of
merit ‖F ‖ and cond(F ) can be given as well by the angular-dependent power
spectra of the h×(t), h+(t) virtual channels defined by eq. 3.14. In fact,
such power spectra play indeed the role of network sensitivity curves, i.e. the
network extension of the single-detector Shh(f). It can be shown numerically
that, in regions where cond(F ) ' 1, such sensitivity curves share a similar
profile and even go below the single-detector ones. However, in regions
where F has a vanishing norm or it is strongly ill-conditioned, the network
sensitivity curves tend to become very different and much larger than single-
detector ones. This is another aspect of the reconstruction inability of a
network with ill-conditioned response matrix.

In order to optimize the geographical factor of the response matrix, it
must be noted that the gw propagation speed is better tested, and the source
direction can be more accurately estimated, when the time delays τm(ϑ, ϕ)
differ greatly for every source direction, i.e. when the single-detector burst
arrival times are widely spread around the mean arrival time. To achieve
this, the detectors should have very different locations rm, with the obvious
practical constraint that they must be located on the Earth surface. In fact,
for a network of very close instruments, the delays vary strongly with (ϑ, ϕ)
but they are always synchronized, i.e. the geographical factor of the response
matrix becomes almost proportional to the identity matrix. If this is the
case, the propagation speed is much more difficult to test and the estimation
of (ϑ, ϕ) is more ambiguous, as it must rely only on the angular factor of F ,
which has the coarse angular scale characteristic of single-detector antenna
patterns. A useful figure of merit in this sense has been defined as the
volume of the solid identified by the detector locations [72]. Accordingly, a
good network should exhibit a fifth property.

5. The volume defined by the detector locations should be maximum. For
instance, a 3-detector network defines a triangle whose area should
be maximum; a 4-detector network identifies a prism whose volume
should be maximum.

Clearly, a network that can hardly fulfill requirements 1-3 is composed of
detectors with similar orientations. In fact, the zeroes of the single-detector
antenna patterns all point in the same directions, creating a number of sky
areas where ‖F ‖ ' 0, e.g. 2 areas for a network of bars and 4 for a network
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of interferometers. The aligned antenna patterns also cause ‖F ‖ to share
their angular profile, thus the sensitivity is far from isotropic. Even worse,
aligned antenna patterns compromise the conditioning, as the response ma-
trix acquires nearly proportional rows almost everywhere in the sky. Row
proportionality implies proportionality of the range vectors. It follows that
the network response matrix is ill-conditioned almost everywhere. Inter-
estingly, a network of aligned instruments is suitable for incoherent burst
searches (e.g. IGEC), but it gives no solution to the gw inverse problem.

However, ill-conditioning may also arise if only two detectors of the net-
work are close to alignment. One can show numerically that the condition
number does not change if the quasi-aligned detector pair is replaced by
a single instrument with sensitivity enhanced by a certain factor. There-
fore, the network appears to effectively “lose” a detector and at the same
time gain sensitivity in another one. This creates an unbalanced response
matrix, with a detector significantly more sensitive than the others, which
makes clear the origin of its ill-conditioning. The extreme case of M exactly
aligned detectors is in fact equivalent to a single detector with higher sensi-
tivity. The inability to reconstruct both gw amplitudes is then clear, as the
full deconvolution can not be achieved with a single instrument.

To study realistic cases, we can form a network with the most sensi-
tive available interferometers, namely the two long-baseline LIGO detectors
(Livingston and Hanford) and the VIRGO one. Numerical evaluation of the
response matrix and network figures of merit2 leads to the sky maps shown
in figure 3.7. The top row presents a network with the two LIGO detec-
tors only. Their strong alignment creates evident regions of the sky with
small ‖F ‖ and some with very large condition number, even larger than
103. These problems are mitigated by the inclusion of VIRGO, which has
a differently aligned antenna pattern. Adding the less sensitive GEO600
interferometer, which bears an even different alignment, heals the defects
even more, notably the condition number whose maximum value drops by
orders of magnitude. Note however that figure 3.7 only represents the angu-
lar factor of the network response matrix: as GEO600 has a poor sensitivity
with respect to LIGO and VIRGO, the improvement is actually smaller than
shown and acquires a frequency dependence.

Focusing on property 5, the upper plot of figure 3.3 tells us that the real
network is not very satisfactory. In fact, although the current interferometers
are fairly spread in longitude, they have been all built on the northern
Earth hemisphere and with similar latitudes. As a result, they enclose a
volume that is less than optimal for testing the gw propagation speed and
for reducing the uncertainty in the estimated source location.

These examples lead to the intuition that a good network for studying gw
bursts should use detectors with maximal misalignment and displacement.
Indeed, we point out an optimal solution with respect to these requirements.
This happens to be a particularly symmetric network, originally designed
with the aim of estimating three gw invariants, namely the wave energy, the
tensor trace and the determinant [73]. It is composed of six resonant bar

2For this purpose we developed tools running under the Matlab environment.
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Figure 3.7: characteristics of the angular factor of the response matrix
for several networks. The sky maps on the left show ‖F (ϑ, ϕ)‖ while the
right ones show the condition number cond[F (ϑ, ϕ)]. Note the improvement
brought by the inclusion of VIRGO and GEO600 and the complete isotropy
and perfect conditioning of the ideal network.
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Figure 3.8: geometry of the ideal “dodecahedral” network. The left figure
depicts the orientation of the six bar-like detectors. The vectors point from
the origin to the centers of six faces of the regular dodecahedron. The right
plot shows a desirable arrangement of the six detectors on the Earth surface.

detectors aligned along the axes of the regular dodecahedron (or, equiva-
lently, pointing from the center to six vertices of the regular icosahedron)
as sketched in figure 3.8. In the language of the network response ma-
trix, we found that this setup remarkably exhibits constant figures of merit
‖F ‖ =

√
8/5 and cond(F ) = 1, as it can be seen in the bottom row of figure

3.7. The response matrix then provides isotropic sensitivity to gws and it
can be perfectly inverted, allowing in principle the deconvolution of h+(t)
and h×(t) without problems. For these reasons, we will regard such a setup
as the minimal “ideal” network with respect to properties 1-3. To satisfy
property 4, the six detectors should simply have similar sensitivity curves.
Finally, for property 5, their locations could be the six vertices of a regular
octahedron inscribed in the Earth sphere.

Due to the known limits of bar detectors, clearly it would be more inter-
esting an ideal network made of interferometers. We found several geomet-
rical arrangements with very good figures of merit (e.g. 1 ≤ cond(F ) < 2
everywhere) although further research is needed for an interferometric equiv-
alent of the “dodecahedral” bar network.

3.4.4 Geometrical interpretation of the network response

Eq. 3.8 provides a simple geometrical interpretation of a gw detection ex-
periment performed with a network of detectors. Let the source direction
(ϑ, ϕ) be fixed. h(t), an object with 2 degrees of freedom, is mapped into
the M -dimensional space of x(t), which we call the network output space, by
a simple linear application F . This mapping takes place instant by instant
and it is effectively independent from the time evolution of h(t). Assuming
for simplicity that (ϑ, ϕ) is known, so that the time delays τm(ϑ, ϕ) have
been correctly compensated (or that the detectors are co-located, so the de-
lays have in practice no effect) this means that the M -dimensional object
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F h(t) can only span a 2-dimensional subspace of the network output space.
This happens regardless of the time dependence of h+(t) and h×(t) or the
source direction (ϑ, ϕ). In other words, looking at the network output space,
gws can only live on a plane, which we will call the gw plane for simplicity.
The response of the network to gw signals follows a very strong geometri-
cal constraint, particularly when M � 1 so that the network output space
is much larger than the natural degrees of freedom of the gw polarization
amplitudes.

The time evolution of h+(t) and h×(t) merely fixes the trajectory traced
by h(t) in its 2-dimensional space. This trajectory is then mapped by F
into the gw plane embedded in the network output space (figure 3.9). In
the general case of complicated polarization (or no polarization at all) the
samples of h(t) trace an arbitrary curve in its 2-dimensional space, and this
curve is mapped into a planar figure in the network output space. Circu-
larly polarized gws are characterized by polarization amplitudes in phase
quadrature: this leads to a circular trajectory in the 2-dimensional space of
h(t), which is mapped by F into a planar trajectory (in general resembling
an ellipse) constrained to the gw plane. A linearly polarized gw signal is
characterized by the property h×(t) ∝ h+(t): consequently, h(t) traces a
line segment in its 2-dimensional space and F h(t) must follow the same
constraint, i.e. it traces a linear segment within the gw plane in the network
output space. Different values of the polarization angle ψ correspond to dif-
ferent orientations of the line segment. Variations of ψ make these segments
just span the whole gw plane.

In general, the orientation of the gw plane in the network output space
depends on the components of F , i.e. it is fixed by the antenna patterns
and by the source direction. In fact, the 2-dimensional subspace associ-
ated with the gw plane is generated by the range vectors F+, F×. There
is consequently a set of planes accessible to gws from arbitrary directions.
Which planes are accessible depends on the antenna patterns and thus en-
codes some of the physical properties of gws. Waves sensed with different
angular sensitivities, e.g. a possible scalar component of gws, would access
a different portion of the output space. Clearly, due to signal sparsity, the
samples of each gw burst populate only one of the planes at a time.

Physical signatures of gws also manifest themselves as transformations
of the trajectory in the output space induced by transformations in the
physical space. Notable examples are 90◦ and 180◦ rotations of the detector
network about the gw wave vector. Due to the spin-2 character of gws,
90◦ rotations change the sign of the polarization states and 180◦ rotations
leave the states unchanged (figure 1.1). Thus, the measured h+(t), h×(t)
waveforms must respectively change their sign and remain unchanged. It
follows that the trajectory in the output space undergoes a reflection about
the origin for 90◦ rotations and that it is invariant for 180◦ rotations.

Even the ill-conditioning of the response matrix has a simple interpreta-
tion within this geometrical discussion. F becomes ill-conditioned when its
range vectors get almost proportional. Accordingly, the gw plane is a sub-
space generated by quasi-aligned vectors. As such vectors represent nothing
more than two basis vectors whose amplitudes are h+(t) and h×(t), the result
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Figure 3.9: trajectories of simulated signals in the 3-dimensional LIGO-
VIRGO network output space. The three axes represent the reconstructed
data xm(t) delivered by each detector, correctly time-delayed to compen-
sate the physical delays τm(ϑ, ϕ). Time flows along the trajectory. i) Gaus-
sian noise with equal variance in every detector. ii) Linearly polarized sin-
Gaussian gw burst. iii) Circularly polarized sin-Gaussian gw burst. iv) The
same burst coming from an ill-conditioned direction. v) Circularly polarized
gw burst without τm(ϑ, ϕ) correction. vi) Spurious glitch in LIGO L. The
curves are clipped to the plot boxes to better show the planar structure of
gws.
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is that the shape of the trajectory traced by h(t), even if perfectly circular as
in the case of circular polarization, is mapped into an extremely distorted,
almost linear shape. In other words, the planar character of the gw tends
to always degenerate into a line. To restore the planar structure, one of
the two polarization amplitudes would have to be unphysically large. This
phenomenon is nothing more than a manifestation of the rank deficiency of
an ill-conditioned F .

Unfortunately, for a network of distant detectors and unknown source
direction, the de-synchronizing effect of the unknown time delays τm(ϑ, ϕ)
clearly distorts the planar shape of gws into a trajectory which, in general,
spans an M -dimensional volume. This can be seen in the lower-left box of
figure 3.9. To recognize the planar aspect of gws, then, one needs to scan
the celestial sphere in search of a direction that flattens the trajectory to a
plane.

The strong geometrical fingerprint exhibited by gws in correspondence
of the correct time delay combination is to be compared with the behaviour
of the spurious signals s(t) and the noise n(t). In the case of a single-
detector glitch occurring in detector m, s(t) traces a line segment along
the m axis of the network output space (figure 3.9). In the general case of
glitches in more detectors occurring at the same time, s(t) may indentify
a plane or a higher dimensional volume. As for the noise, it represents
a stochastic process and consequently it spans the whole M -dimensional
output space, with different magnitudes depending on each detector variance
σm. In particular, if σm = σ for m = 1 . . .M , the spanned volume is an
M -sphere.

The discussed “degeneracy” of gw signals in the output space implies
that, if M > 2, there exists a (M−2)-dimensional subspace, complementary
to the gw plane, where there can be no gw contribution (null space) [60]. We
may therefore construct a basis for the M -dimensional output space with 2
elements spanning the gw plane and the other elements spanning the null
space [61]. For example, the LIGO-VIRGO network has a 1-dimensional null
space, whose basis element can be constructed by the simple cross-product
F 0 = F+×F×. Projecting x(t) along F 0 then yields a time series where any
gw signal coming from the correct (ϑ, ϕ) direction is removed, irrespectively
of its time dependency. As anticipated, such a null time series is known as
null stream.

If M > 3, more null streams are available and we need a more general
way than the cross-product to construct them. This is provided as a “by-
product” by the procedure leading to the Moore-Penrose inverse. In fact,
one can define two M ×M matrices

P = FF †

Q = I − FF † (3.20)

where I is the M ×M identity matrix [68] (we omitted the dependencies of
F for simplicity, but P and Q clearly inherit them). The crucial property
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of these matrices is that

PF = FF †F = F

QF = F − FF †F = F − F = 0 (3.21)

as F †F = (F TF )−1F TF = I. Hence, P leaves the network response to a
gw signal unaltered, while Q cancels it:

Px(t) = P (Fh(t) + n(t)) = Fh(t) + Pn(t)
Qx(t) = Q(Fh(t) + n(t)) = Qn(t). (3.22)

Similar straightforward algebra shows that P 2 = P , Q2 = Q and QP = 0,
and thus we recognize in P and Q a pair of complementary and orthogonal
projection matrices. Their action on x(t) represents the projection on the
gw plane and on the null space respectively. In other words, P projects
x(t) on the gw plane, leaving the gw signal unaltered and reducing the
noise fluctuations, while Q projects x(t) on the null space, removing the gw
signal and also reducing the noise magnitude. Clearly, the sum of the two
projections gives back x(t) as the projectors are complementary.

Other notable properties of P and Q arise straightforwardly from the
fact that they are projectors. For the following discussion, relevant ones are
their unit norm, namely ‖P ‖ = ‖Q‖ = 1 and their eigenvalue spectra which
reduce to {0, 1}. We stress that such properties follow from the projector
character of the matrices in all generality and thus they can not depend on
(ϑ, ϕ).

The unit norm notably implies that no divergency can occur when ap-
plying P and Q to the data, even when F is ill-conditioned. This is because
a projection means asking the inverse problem much less than the full re-
construction of h+(t) and h×(t).

Let us summarize the discussion. Naturally, gw signals contribute to
the detector output only along a 2-dimensional plane in the network out-
put space, whose orientation depends on the source direction. For an ar-
bitrary network configuration with M > 2, the procedure for constructing
the Moore-Penrose inverse provides a way to project the observed data on
the gw plane and on the complementary null space. This defines two new
synthetic time series xP (t) = Px(t) and xQ(t) = Qx(t) out of x(t): the
former carries reduced noise but identical gw signal, the latter carries re-
duced noise only. Differently from what can happen with the reconstructed
h+(t) and h×(t) synthetic streams, xP (t) and xQ(t) are always character-
ized by a finite noise variance, which makes them more suitable for tackling
the detection and discrimination problems.

3.5 Detection and discrimination through geomet-
ric projections

Thanks to the definition of xP (t) and xQ(t), the geometrical constraint
provides in principle a way to distinguish gw bursts from noise and glitches.
In fact, we can scan the celestial sphere and for each direction compute such
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Figure 3.10: time evolution of the EP and EQ channels in presence of a
gw burst, using the ideal network. EP and EQ are evaluated at the correct
source direction. The gw burst is identified as the excess of energy in the
first plot with respect to the second.

time series, looking for a direction for which xQ(t) loses any possible gw
signal with respect to xP (t) [61]. This should be the signature of a planar
structure of the data, useful for recognizing gws among noise and glitches.
As a by-product, the scan also gives us an estimate of the source direction.

The M components of xP (t) and xQ(t) are no longer associated with
a particular detector, as they represent linear combinations of the single
detector outputs. There is no reason to treat each component differently
from the others, thus we gather such M -dimensional information into two
more convenient statistics, the quadratic forms

EP (t) = ‖xP (t)‖2 = xT (t) P x(t)
EQ(t) = ‖xQ(t)‖2 = xT (t)Qx(t) (3.23)

where we exploited the property P TP = P and QTQ = Q. EP and EQ
represent the instantaneous “energy” of the P and Q projections (the “gw
energy” and the “null energy”) or more precisely the magnitude of the data
vector projected in the two complementary subspaces. Note that the EP , EQ
time series depend on the direction (ϑ, ϕ) we are considering. In particular,
EQ is the residual function of the inverse problem and it can be used to find
the true gw source direction [68] as will be clear in the following. As an
example, figure 3.10 shows the EP , EQ time series for a gw burst, evaluated
at the true source direction.

To identify the planar structure of a possible gw burst we can then
evaluate EP and EQ over the celestial sphere and look for time intervals and
directions where there is an excess of energy in the former, but significantly
less energy in the latter. In fact, this is the signature of a vector belonging
to one of the gw planes. Figure 3.11 shows the sky maps of one sample of EP
and EQ, for a data set containing only Gaussian noise and for another data
set also containing a gw burst. The oscillations of the gw burst waveforms
produce interference fringes in the sky maps, because, due to the time delays
τm(ϑ, ϕ), moving on the celestial sphere effectively shifts the M realizations
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Figure 3.11: sky maps of one sample of the virtual channels EP , EQ (t = 0)
for the ideal network. In the bottom sky maps, the source direction is
marked by the ‘×’. Note the (mean) isotropy of the noise in the top sky
maps, and the interference fringes due to the time delays in the bottom ones.

of the signal alternatively in and out of phase. In particular, the sky map
is populated with M “rings”, each corresponding to one of the detectors,
that produce constructive and destructive interference. The rings fly over
the celestial sphere as time passes and they all intersect in a single spot
when the mean wavefront of the burst crosses the center of the Earth. The
spot matches the true source direction (the ‘×’ in figure 3.11) and in its
neighborhood we find an excess of energy in EP associated with a reduction
of energy in EQ.

3.5.1 Statistics of EP and EQ

EP and EQ are described by remarkably simple statistics. In fact, under
reasonable assumptions about the noise, the properties of P and Q allow
us to derive the joint probability density P (EP , EQ).

Let us start by writing

P (EP , EQ) =
∫
P (x)δ(EP − xTP x)δ(EQ − xTQx) dx (3.24)

where P (x) is the probability density of one sample of the network data
vector x. The two Dirac deltas can be written using their Fourier transforms,

P (EP , EQ) =
∫∫∫

P (x) exp
[
uEP + vEQ − xT (uP + vQ)x

]
du dv dx

(3.25)
where the integrals in du and dv are performed along the imaginary axis.
Now assume the noise is Gaussian distributed, uncorrelated between differ-
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ent detectors and with identical variance σ2 in every detector, namely

P (x) =
1

(2πσ2)
M
2

exp
(
− 1

2σ2
(x− s)T (x− s)

)
(3.26)

where s is any signal (either gw or spurious) superposed to the noise. Then,

P (EP , EQ) =
(α
π

)M
2

∫∫∫
exp

[
−α(x− s)T (x− s)

]
·

· exp
[
−xT (uP + vQ)x

]
dx ·

· euEP evEQ du dv, (3.27)

where α = 1/2σ2. Writing x as s+n and switching the integration variable
to n yields

P (EP , EQ) =
(α
π

)M
2 ·

·
∫∫∫

exp
[
−nT (αI + uP + vQ)n− 2nT (uP + vQ)s

]
dn ·

· exp
[
−sT (uP + vQ)s

]
euEP evEQ du dv. (3.28)

The integration in dn can be done by noting that it is a standard M -
dimensional Gaussian integral with the linear term, and in general, for any
M ×M symmetric matrix A and M -vector b,∫

exp
(
−nTAn+ bT n

)
dn =

πM/2√
det(A)

exp
(
bTA−1 b

4

)
. (3.29)

In our case,

A = αI + uP + vQ

b = 2(uP + vQ)s. (3.30)

Now we exploit the properties of P and Q. Using their complementarity,
we can write

A = (α+ u)P + (α+ v)Q (3.31)

and from the fact that they are orthogonal and idempotent we also have

A−1 = (α+ u)−1P + (α+ v)−1Q, (3.32)

hence

bTA−1 b = 4
(

u2

α+ u
sTP s+

v2

α+ v
sTQ s

)
. (3.33)

Furthermore, as P and Q are projection matrices, their eigenvalues are
{0, 1} with multiplicities respectively {M − 2, 2} for P and {2,M − 2} for
Q. Then, writing A in diagonal form is trivial and leads to

det(A) = (α+ u)2(α+ v)M−2, (3.34)

determinants being independent from the basis. By using 3.33 and 3.34
in 3.29 one can see that the Gaussian integral splits into the product of
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factors involving either u or v. By further substituting in 3.28, the remaining
integrals separate and the probability density remarkably factorizes as

P (EP , EQ) = P (EP ) P (EQ) (3.35)

with

P (EP ) =
∫

1
1 + 2σ2u

exp
(
−sp u

1 + 2σ2u

)
euEP du

P (EQ) =
∫ (

1
1 + 2σ2v

)M
2
−1

exp
(
−sq v

1 + 2σ2v

)
evEQ dv (3.36)

and sp = sTP s, sq = sTQ s. As a final step, recall that these integrals
represent two inverse Fourier transforms. The transformed functions now
match the moment generating functions of two non-central χ2 distributions,
with 2 and M − 2 degrees of freedom respectively, and whose non-centrality
parameters are sTP s and sTQ s respectively. Thus,

P (EP ) =
1
2

exp
(
−EP + sp

2σ2

)
I0

(√
EP sp

σ2

)

P (EQ) =
1
2

exp
(
−
EQ + sq

2σ2

) (
EQ
sq

)M
4
−1

IM/2−2

(√
EQsq

σ2

)
(3.37)

where Iν(a) is the modified Bessel function of the first kind.
Summarizing, under the assumption of white Gaussian noise, uncorre-

lated between different detectors and with identical variance, several notable
conclusions can be drawn about the virtual channels EP and EQ, which make
them interesting for the detection and discrimination of gws.

1. EP is distributed as a non-central χ2 with 2 degrees of freedom and
non-centrality parameter equal to sTP s, i.e. the magnitude of the
signal projection in the P subspace.

2. EQ is distributed as a non-central χ2 with M − 2 degrees of freedom
and non-centrality parameter equal to sTQ s, i.e. the magnitude of
the signal projection in the Q subspace.

3. EP and EQ are statistically independent processes.

In absence of any signal, i.e. s = 0, the virtual channels exhibit a notably
simple behaviour. In fact, the two distributions reduce to independent cen-
tral χ2, with 2 and M − 2 degrees of freedom (figure 3.12). Then, as P and
Q only appear in the non-centrality terms, the virtual channels become—
on average—independent both from the angles (ϑ, ϕ) and the network ge-
ometry. We can see that in the top sky maps of figure 3.11: P (EP , EQ)
remains unchanged while we scan the celestial sphere. Such invariance can
be interpreted geometrically by recalling that the network noise, assuming
the same variance in every detector, identifies a spherical volume in the
network output space. Then, slicing this volume with differently oriented
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Figure 3.12: results of simple Monte Carlo simulations to evaluate the statis-
tics of one sample of EP and EQ, in presence of noise only and noise+gw.
The left plots are the histograms of EP (blue dots) and EQ (red dots) while
the right plots sketch the 2-dimensional histograms of (EP , EQ) (log color
scale). For the gw cases, EP and EQ are evaluated at the correct source
direction. The histograms follow the theoretical P (EP ) and P (EQ) (contin-
uous lines in the left plots).
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planes (i.e. projecting it with P andQ for different source directions) always
yields statistically the same result. Clearly, a dependence on (ϑ, ϕ) appears
as soon as the noise variances in the detectors are different, because the
noise trajectory in the output space loses its mean isotropy and becomes an
M -dimensional ellipsoid.

The possible ill-conditioning of F does not have an explicit effect in
these statistics. In fact, it only causes the collapse of the 2-dimensional gw
trajectory towards a 1-dimensional segment and no divergence can occur if
this curve is projected with P and Q. We only expect a reduction of energy
in EP with respect to the gw energy hrss and accordingly a difficulty to
detect and recognize gw bursts coming from ill-conditioned directions.

When s represents a non-null gw contribution and the virtual channels
are evaluated at the correct source direction, Q cancels the non-centrality of
EQ, P (EQ) reduces to a central χ2 and EQ attains, on average, its minimum.
On the other hand, the signal energy is forced to concentrate in the P
channel and P (EP ) reaches its maximum non-centrality. This accounts for
the significant suppression of EQ with respect to EP (figure 3.12).

When s is a gw signal, but we are evaluating the virtual channels at
wrong source angles, there is no cancellation in EQ. This also happens
when s is a spurious signal. In general, gws from wrong directions and
spurious signals can not be directly distinguished in the virtual channels.
The difference lies in the fact that, for gws, one can always find a direction
in the celestial sphere where a strong EQ cancellation occurs with respect
to EP , while for spurious signals such a direction does not, in general, exist.

Nevertheless, a network could be “degenerate” in the sense that some of
the gw planes may contain one of the axes. This occurs whenever a direction
exists for which the antenna patterns of all detectors vanish except one.
Such degeneracy is troublesome because, if this is the case, gws are truly
indistinguishable from single spurious signals produced by the corresponding
detector, whatever the analysis algorithm is. In fact, any transient signal
in that detector can always be interpreted as a gw burst coming from the
problematic direction. This serious issue does indeed happen for the LIGO-
VIRGO network: for two opposite sky patches, two detectors have almost
null response to gws while the third is more sensitive (figure 3.13). However,
these patches are fairly small and they can always be excluded from the gw
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Figure 3.13: sky maps of the number of detectors for which F̂ (ϑ, ϕ) > 0.2.
In the LIGO-VIRGO network, note the patches where only a single detector
is sensitive (blue areas).
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search, i.e. the visible sky can be slightly reduced to “safe” regions only.
Equivalently, one may always veto any gw burst detected by the analysis
and coming from those directions. Figure 3.13 also shows that the ideal
dodecahedral network does not exhibit such pathologies and covers the whole
sky with a uniform number of “active” instruments.

3.5.2 Time-frequency multiresolution analysis

In the above discussion, the samples of EP and EQ are treated indepen-
dently of each other, as x can be effectively projected instant by instant.
Consequently, searching the sky for an excess of energy in EP matching
a lack of energy in EQ can be performed instant by instant. Clearly, we
are not taking into account the expected phase coherence of the gw burst.
Accordingly, by using the time domain only we are spreading the unknown
time-frequency structure of the gw waveform over a possibly large number of
samples. On the contrary, we would like to exploit the expected waveform
phase coherence to better recognize the gw burst buried in the noise. In
particular, it would be useful to concentrate the signal in a limited number
of high energy samples (ideally just one), as this would make the difference
between EP and EQ stand higher above the noise fluctuations.

For this purpose we could use intermediate time-frequency representa-
tions of x rather than the time-domain only. A suitable tool for the time-
frequency representation of unknown transient signals is the wavelet trans-
form and in particular its discrete implementation known as the wavelet
packet decomposition [74]. In the following, we give a brief introduction to
such formalism.

The continuous wavelet transform decomposes a signal on basis func-
tions constructed by translating and scaling a unique prototype function
ψ(t) (mother wavelet). In fact, translation and scaling operations can be
shown to provide a basis for e.g. the L2(R) space of functions, where we
assume to find the gw waveforms. The basis functions are waveforms of lim-
ited duration (the opposite of the sinusoidal basis of the Fourier analysis)
and limited bandwidth (the opposite of the δ basis of the time domain).
Such feature realizes the simultaneous time and frequency localization of
the signal spectral components (to an extent compatible with the Heisen-
berg uncertainty principle, clearly). This leads to the key feature of the
wavelet analysis, i.e. its efficient representations of transient signals. The
basis functions have the form

ψτ,s(t) =
1√
|s|
ψ

(
t− τ
s

)
(3.38)

with τ, s ∈ R. τ and s 6= 0 represent the location and scale parameters, which
control the time-frequency extension of the basis element. By varying τ and
s one can partition the full time-frequency plane with different resolutions.
The continuous wavelet transform of a signal x(t) takes the form of a simple
scalar product in L2(R),

X (τ, s) =
∫

R
ψ∗τ,s(t)x(t) dt. (3.39)
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It can be also shown that under a suitable admissibility condition about
ψ(t), x(t) can be fully reconstructed from X (τ, s). Many classes of mother
wavelets ψ(t) have been introduced, each with characteristic properties.
There is no strict indication for the choice of the mother wavelet and one
is generally guided by the characteristics of the signals to analyze, e.g. con-
tinuity and differentiability for gw bursts. In our simulations we use high
order wavelets of the symlet family, i.e. the symlet 10.

The continuous wavelet transform is strongly redundant and it can be
discretized without loss of information. Sampling τ and s on a dyadic mesh
(i.e. τ = j2−k and s = 2−k with j, k ∈ Z) yields the discrete wavelet
transform (DWT) [74]. A notable feature of the DWT is its connection
with the multiresolution analysis (MRA) [74]. The MRA is the decomposi-
tion of a signal into a hierarchy of functions that approximate it more and
more accurately. Each function lies within a closed approximation subspace
Vk ⊂ L2(R) so that Vk−1 ⊂ Vk ⊂ Vk+1 and

lim
k→−∞

Vk = {0}, lim
k→+∞

Vk = L2(R). (3.40)

In other words, the index k determines the resolution of the approxima-
tion, i.e. the function in Vk+1 better approximates the signal than the one
in Vk. In addition, the MRA defines the detail subspace Wk as the or-
thogonal complement of Vk in Vk+1. Wk contains the additional detail
required to improve the resolution from level k to k + 1. An orthogo-
nal basis for each Vk is provided by the discrete translations of a scaling
function φ(t), i.e. {φk,j} = {2k/2φ(2k/2t − j)}. Conversely, an orthog-
onal basis for Wk is provided by translations of a wavelet ψ(t), namely
{ψk,j} = {2k/2ψ(2k/2t − j)}. The coefficients of such bases are the approx-
imation and detail coefficients respectively. Note that, due to the comple-
mentarity of the approximation and detail subspaces, both {φk+1,j} and
{φk,j , ψk,j} are bases for Vk+1.

The connection between DWT and MRA arises because the sampling
process represents a continuous signal x(t) by discrete samples {x[j]} =
{x(jts)}, where ts is the sampling period. If ts is small enough, we can
write ts = 2−k with k a large integer. Therefore, the sample set {x[j]} can
be thought as the MRA approximation coefficients of x(t) within some ap-
proximation space V0. Thus, we can exploit the hierarchy of approximation
and detail subspaces and decompose

V0 = Vk0 ⊕Wk0 ⊕Wk0+1 ⊕ . . .⊕W−1. (3.41)

Accordingly, the scaling functions for level k = k0 and the wavelets for levels
k = k0 . . .−1 form together an orthogonal basis for V0. In such a framework,
the DWT of x(t) is simply the expansion over this basis, i.e. the set of ap-
proximation coefficients {ak0,j} and detail coefficients {{dk0,j} . . . {d−1,j}}.

The crucial feature that makes the DWT practically feasible is the fact
that one does not need to explicitly calculate the scaling functions, the
wavelets and their scalar products with the signal. In fact, φ(t) and ψ(t)
can be defined through a pair of discrete finite impulse response (FIR) filters,
called conjugate mirror filters, that represent two complementary band-pass
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operations. The evaluation of the DWT is then equivalent to the iterative
application of such filters to the data samples, followed by a decimation of
the filtered samples at each iteration. This is known as the Mallat algorithm
and it is computationally very efficient, playing the role of the fast Fourier
transform algorithm for the discrete Fourier transform.

Since each basis element can be associated with a particular (finite) time-
frequency support, the whole basis of the DWT determines a characteristic
partition or “tessellation” of the time-frequency plane, as it is also true
for other bases like the time domain and Fourier basis. The time domain
is associated with tiles that are infinitesimally thin along the time axis and
infinitely extended along the frequency one: this accounts for the well-known
absence of frequency resolution of the time domain. On the opposite extreme
is the Fourier domain, which partitions the time-frequency plane into tiles
infinitesimally thin along the frequency axis an infinitely extended along
the temporal dimension. Instead, the DWT partition is made of constant-
area tiles with better frequency resolution at low frequency and better time
resolution at high frequency. Such transition in resolution resembles the
logarithmic behaviour of the dyadic grid with which τ and s are sampled.

Although the partition associated with the DWT is very useful for slow
signals contaminated by fast fluctuations in the noise, actually there is
no reason for such variation of the time-frequency resolution in gw burst
searches: in fact—as discussed in chapter 2—gw waveforms pass through
the detectors, which limit their time-frequency extension to finite frequency
bands. Given the unknown time-frequency structure of gw bursts, a uniform
partition of the time-frequency plane is therefore preferred.

This is provided by a computationally efficient generalization of the
DWT, known as wavelet packet (WP) decomposition [74]. The WP de-
composition generalizes the DWT by not only decomposing each approxi-
mation subspace Vk into Vk−1 and Wk−1, but also by decomposing the detail
subspace Wk. This decomposition can be arbitrarily iterated and continued,
deciding at each iteration which subspaces to further split (figure 3.14). This
allows one to achieve arbitrary partitions of the time-frequency plane. For

Figure 3.14: example wavelet packet decomposition. On the left, the asso-
ciated binary tree is shown.
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Figure 3.15: on the left, partition of the time-frequency plane associated
with a complete wavelet packet decomposition. On the right, the partition
associated with the discrete wavelet transform.

example, one may decompose every subspace at each iteration, obtaining
an uniform partition of the time-frequency plane (complete decomposition).
Or, one may just decompose the Vk subspaces, recovering a DWT-like parti-
tion. Each partition of the time-frequency plane is uniquely associated with
a chain of iterative decompositions and it can be conveniently represented
by a binary tree, whose nodes represent the subspaces (figure 3.15). The
leaves are subspaces that are no furtherly decomposed. They are mutually
orthogonal and their direct sum gives back the original space (the root of
the tree).

The complete WP decomposition is suitable to explore the available data
at more time-frequency resolutions. In fact, each successive decomposition
doubles the frequency resolution and halves the time one, further departing
from the time domain and approaching the Fourier basis more and more.
It has been shown by Monte Carlo simulations that a threshold on the
maximum coefficient of a complete WP decomposition defines a decision
rule with very good detection efficiency for single-detector gw burst searches
[54].

Thus, we can exploit the multiresolution analysis provided by the WP
transform by decomposing the M data sets {x[j]} up to a maximum level
K, producing the vector of coefficients {dpk[j]}, where p labels the time-
frequency pixel along the frequency axis, j labels it along the time axis
and k labels the decomposition level up to K. Including the time domain,
this gives rise to K redundant representations of {x[j]} that scan the time-
frequency plane with different resolutions, starting with the maximum res-
olution in time (the time domain itself) and ending with a better resolution
in frequency, as we approach the maximum achievable decomposition level
(fixed by the limited number of available samples N). Among these different
partitions, there is one whose tiles best match the time-frequency extension
of the gw signal. Then, as the different decomposition levels can be shown
to be orthogonal, the signal concentrates into few high energy coefficients,
while the noise is spread among the other coefficients.

By constructing the EP , EQ statistics from the vector of WP coefficients
{dpk[j]}, we thus create K time-frequency maps of gw and null energies, func-
tions of (ϑ, ϕ). Thanks to the linearity of the WP decomposition, Gaussian
noise in the data implies that each coefficient is also Gaussian distributed
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Figure 3.16: wavelet packet time-frequency maps of EP and EQ, at the
decomposition level k = 6, for a simulated gw burst seen by the ideal detector
network. In the top plots, note the complete vanishing of the gw time-
frequency structure on the EQ map. Such disappearance can be hardly
noticed when the source direction is wrong.

and thus EP , EQ retain the χ2 distributions discussed previously. These
“extended” EP , EQ maps allow us to achieve better localization and recog-
nition of any excess of energy in EP with respect to EQ. As an example,
we sketch in figure 3.16 the k = 6 WP maps of EP and EQ. The simulated
gw burst, though of modest amplitude with respect to the noise standard
deviation, is strongly concentrated in a few intense pixels, allowing one to
readily recognize its cancellation in EQ. Failing to match the correct source
direction evidently disrupts the synchronization of the time delays, spread-
ing the burst over several weaker coefficients. Furthermore, the mismatched
projections tend to distribute the weak residual energy equally in both maps.

It is worth noticing that, if the time-frequency support and source loca-
tion of the gw burst were known, we could avoid scanning the time-frequency
plane at different resolutions and searching the celestial sphere. In fact, we
would be able to localize the burst energy, both in time-frequency and source
direction. This would be equivalent to an “extended” local power test and
thus a threshold on EP would provide an optimal detection method with
respect to the Neyman-Pearson criterion. At the same time, a null detection
on EQ would provide a strong discrimination of non-gravitational signals.
Lacking such prior information, we must resort to scanning the complicated
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map on the time-frequency plane and celestial sphere, looking for an excess
of energy in EP with respect to EQ.

3.5.3 The PQ plane

So far we pointed out how we can recognize the planar structure of gw signals
by gathering the original M -dimensional information into two synthetic,
power-like statistics EP and EQ. At this point, detection and discrimination
rules must be defined on such statistics as required by the initial discussions
and in particular by figure 3.2.

We formulate this problem by considering the 2-dimensional (EP , EQ)
plane (PQ plane in short). As the time-frequency plane and celestial sphere
are scanned, the PQ plane is populated differently by the collected data.
In particular, we can split it into three regions accordingly to the joint
probability density P (EP , EQ).

One region is mainly populated when the data contain Gaussian noise
only. In this case, P (EP , EQ) is the product of two central χ2 distribu-
tions with 2 and M − 2 degrees of freedom. As M is always a small num-
ber, P (EP , EQ) concentrates mainly near the origin of the PQ plane, with
exponentially-decaying tails towards larger EP and EQ (figure 3.17, box I).
The independence of P (EP , EQ) from (ϑ, ϕ) implies that the Gaussian noise
is constrained into this region while we scan the celestial sphere, provided
that the noise variance has been correctly normalized between the detectors.

The second region is populated by gw signals that come from the direc-
tion (ϑ, ϕ) at which EP and EQ are evaluated. In fact, in this case P (EP )
becomes non-central and its bulk shifts towards larger EP values, while
P (EQ) is still a central χ2. Thus, gws from the tested direction populate a
horizontal “strip” bounded from below by the EP axis (figure 3.17, box I).

The rest of the PQ plane is populated when the non-centralities of both
statistics become significant, i.e. for spurious signals and gws coming from
a wrong sky direction. This stresses even more the similar role played by
these signal classes.

In presence of a signal, the non-centralities of P (EP , EQ) keep the bulk
of the distribution away from the noise region. Nevertheless, the non-
centralities become differently distributed among the P and Q subspaces
while we scan the sky (we are slicing the network output space with differ-
ently oriented planes). Accordingly, the data oscillates between the EP and
EQ axes. How close it gets to the gw region can be used to discriminate if
the data represents a gw burst or a spurious signal, because spurious sig-
nals will never get into the gw region. In other words, gw detection and
discrimination are performed simultaneously by characterizing how the dis-
tribution of the data moves on the PQ plane while the time-frequency plane
and celestial sphere are explored.

Therefore, as the final step to construct our detection and discrimination
algorithm, we need to define the region of gw acceptance in the PQ plane.
According to the statistics of EP and EQ, a simple solution is the rectangular
region bounded by two thresholds T1 and T2, i.e.

R1 = {(EP , EQ) | EP > T1, EQ < T2} (3.42)
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Figure 3.17: I) the PQ plane. The red line roughly bounds the noise region
while the green one marks the gw region. II–IV) the gw acceptance regions
discussed in the text.
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(figure 3.17, box II). However, we expect that such “ideal” region is not
convenient in a realistic algorithm. In fact, a practical search necessarily
involves a discretization of the sky into a finite set of directions and thus
misses the exact gw source direction with high probability. The test direction
comes close to the true one, but the error is in practice always finite. On the
one hand, this leads to an imperfect synchronization of the time delays; on
the other hand, the resulting P and Q projectors are not perfectly matched
to the gw plane. It follows that there is a slight energy deficiency in EP
and, at the same time, a non-null residual energy ∆E in EQ. Putting a hard
threshold T2 on EQ may therefore prevent an efficient detection. Moreover,
contrary to intuition, an intense gw burst may be easily missed, because—
for constant error in the source direction—∆E is clearly proportional to the
total signal energy. The same issue may happen due to calibration errors in
the detector transfer functions, because we may expect that they prevent the
perfect cancellation of the gw in the Q subspace. The problem was identified
in a similar gw discrimination strategy [61] and the proposed solution was to
consider the relative energy cancellation in the P and Q subspaces, rather
than requiring the exact cancellation in EQ. Indeed, the proportionality
between ∆E and the total energy suggests proportionality also between ∆E
and EP . A more robust gw region then resembles a trapezoid, bounded at
the top by the line defined as EQ/EP = T2:

R2 = {(EP , EQ) | EP > T1, EQ/EP < T2} (3.43)

(figure 3.17, box III). A slightly different alternative is to use the T1 threshold
on the total energy EP + EQ and to retain the sloped top edge of R2. The
resulting region

R3 = {(EP , EQ) | EP + EQ > T1, EQ/EP < T2} (3.44)

closely represents a total power detection to distinguish Hgw and Hs from
H0, followed by a discrimination through the statistic EQ/EP to distinguish
Hgw from Hs (figure 3.17, box IV).

Once the gw acceptance region R is defined, we can evaluate the alarm
probability for a single coefficient of the EP and EQ maps by means of the
integral

p =
∫
R
P (EP , EQ) dEP dEQ =

∫
R
P (EP )P (EQ) dEP dEQ. (3.45)

By using the central χ2 distributions for P (EP ) and P (EQ), this gives the
false alarm probability, while by using the non-central χ2 distributions we
get the detection probability for gw or spurious signal, depending on the
non-centralities.

Thanks to the factorization of P (EP , EQ), the case with region R1 is
simply

p(T1, T2) =
∫ ∞
T1

P (EP ) dEP
∫ T2

0
P (EQ) dEQ. (3.46)

The false alarm probability for Gaussian noise with unit variance can then
be obtained by means of the well-known central χ2 cumulative distribution
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functions for 2 and M − 2 degrees of freedom [75], i.e.

pfa(T1, T2) =
[
1− γ(1, T1/2)

Γ(1)

] [
γ(M/2− 1, T2/2)

Γ(M/2− 1)

]
(3.47)

where γ(a, b) and Γ(a) are the lower incomplete and complete Euler gamma
functions. In presence of a signal, the non-centralities sp = sTP s and sq =
sTQs appear: the resulting cumulative distributions for the non-central χ2

can only be expressed by series expansion. Nevertheless, we can use the
second-moment approximation [56] and write the detection probability as

pd(T1, T2) =

1−
γ
(

(sp+2)2

4(sp+1) ,
(sp+2)T1

4(sp+1)

)
Γ
(

(sp+2)2

4(sp+1)

)
 ·

·

γ
(

(sq+M−2)2

2(2sq+M−2) ,
(sq+M−2)T2

2(2sq+M−2)

)
Γ
(

(sq+M−2)2

2(2sq+M−2)

)
 (3.48)

For instance, the probability of detecting a gw burst by testing the correct
source direction can be obtained by eq. 3.48 with sq = 0. Note that eq. 3.48
correctly reduces to pfa(T1, T2) for sp = sq = 0.

Using the region R2 yields instead the alarm probability

p(T1, T2) =
∫ ∞
T1

P (EP )
∫ T2EP

0
P (EQ) dEP dEQ (3.49)

which can be hardly simplified even for the false alarms produced by Gaus-
sian noise, as the roles of T1 and T2 become entangled and we need to
integrate a χ2 cumulative distribution function. Similar complications also
hold for region R3.

The above calculations account for testing a single coefficient against the
gw acceptance region of the PQ plane. Accordingly, they may not match the
actual false alarm and detection probabilities for the whole analysis pipeline,
which entail searching the whole celestial sphere and time-frequency maps
at different levels. The full evaluation of the analysis performances requires
complete Monte Carlo simulations, as discussed in the next chapter.

We conclude with the reminder that, as it is well known, current inter-
ferometers produce less than ideal data, with noise that may significantly
deviate from the Gaussian distribution. Nevertheless, we can construct the
virtual channels EP , EQ in any case and represent them in the PQ plane. Al-
though it is reasonable to expect the presence of a Gaussian bulk in the noise
region, real data will populate this plane differently from what we expect
and the optimal gw region could be difficult to define analytically. However,
it may be found empirically by constructing the null data sets, e.g. through
unphysical time shifts or data surrogation, and by studying their distribu-
tion in the PQ plane, in order to fix the acceptable false alarm rate prior
to searching for candidate gw bursts. Establishing the effectiveness of the
method with realistic noise is another operation that can be performed by
means of complete Monte Carlo simulations.
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Chapter 4

Implementation and Monte
Carlo simulations

Although the statistical behaviour of EP and EQ are known analytically for
each pixel of the time-frequency plane, it is difficult to accurately predict
the combined effects of the time delays τm(ϑ, ϕ), the wavelet transform and
the chosen gw acceptance region in the PQ plane. In particular, we need to
assess the detection and discrimination effectiveness of the full method.

A Monte Carlo simulation can be used to fully characterize the overall
performances. In fact, we can simulate the arrival of gw bursts with arbitrary
waveforms and source direction, evaluate the noisy network response to them
and feed such response to a prototype of the analysis algorithm. By carrying
out many repeated simulations for each value of the threshold we are then
able to estimate both the false alarm probability (by injecting null gw bursts)
and the detection efficiency. By combining the two estimates, the ROC
curves can thus be evaluated and we can discuss the performances of the
method.

Another useful feature of the Monte Carlo method is its ability to use
non-Gaussian noise (and possibly even the real detector noise) or to intro-
duce artificial calibration errors. Thus, we are able to test the performance
degradation due to such issues.

An obvious drawback of Monte Carlo simulations is that, as many trials
must be performed to collect enough statistics, there is need for computing
power. This is especially true for network gw data analysis.

4.1 Prototype of the analysis algorithm

We implemented a prototype of the analysis algorithm using the Matlab
environment. Accordingly to what defined in chapter 3, after calculating
the M time series xm[j] representing the detector outputs, the algorithm
performs the following operations.

1. A test direction is picked from a suitable mesh on the celestial sphere.

2. P and Q are evaluated for the chosen direction.
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3. The series xm[j] are correctly time-shifted to synchronize the arrival
times of a possible gw signal.

4. The M WP decompositions are performed up to a maximum level K.
We use our own optimized implementation of the WP decomposition
in order to save computing time.

5. The resulting 3M -dimensional array of WP coefficients is projected
with P and Q.

6. The statistics EP and EQ are formed.

7. The resulting pair of 3-dimensional arrays is scanned, looking for items
falling within the gw acceptance region of the PQ plane. Items falling
within the region trigger a gw detection.

8. Operations 1-7 are repeated for another point of the sky, until the
whole mesh has been searched or a detection has been recorded.

In order to produce accurate estimates of the alarm rates, the operations
are repeatedly ran over many realizations of the network response.

Some of the operations, e.g. step 2, are actually pre-calculated to save
computing time.

4.2 Simulation parameters

4.2.1 Detector networks and output signals

In order to verify the effect of the network figures of merit ‖F ‖ and cond(F ),
we compare the effectiveness of the analysis when applied to two very differ-
ent networks. In particular, we expect that the main parameter controlling
the detection efficiency is the “total observed signal strength”

hobs =
[∫ +∞

−∞
‖F h(t)‖2 dt

] 1
2

(4.1)

which clearly depends on the network figures of merit and on the intrinsic
gw signal strength hrss. We thus use the realistic 3-detector LIGO-VIRGO
network and the ideal dodecahedral network.

The networks are constructed by using the parameters discussed in chap-
ter 3. The sensitivity curves are assumed identical for every detector, infinite
outside the 70–1000 Hz band and constant inside the same band, which is
a reasonable approximation to realistic interferometric sensitivity curves of
figure 2.1.

The simulated network output signals are time series lasting ∼ 0.5 s,
oversampled to 10 kHz, populated with white Gaussian noise and band-
passed within the 70–1000 Hz band. The total noise variance after band-
passing is normalized to 1. The actually analyzed window of samples is
slightly reduced with respect to the original ∼ 0.5 s due to the time delays
τm(ϑ, ϕ).

The maximum WP decomposition level is set to K = 6.
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4.2.2 Discretization of the sky

As the distribution of gw sources is not known, in general there is no physical
motivation to prefer one sampling of the celestial sphere to another. A
reasonable choice is a uniform sampling, e.g. one may choose a uniform grid
on ϑ and ϕ sin(ϑ) [61].

A second parameter is the number of points, which should be tuned
accurately because it determines the computational needs and it clearly im-
pacts the false alarms and detection efficiency. To fix it, we should estimate
the characteristic angular scale of the EP and EQ statistics in presence of
gw bursts. Following eq. 3.10, the angular scale is determined both by the
angular factor (i.e. the antenna patterns) and by the geographical factor
(i.e. the time delays) of the network response matrix. The former bears
a constant, coarse angular scale characteristic of the quadrupolar antenna
pattern, resembling the shape of cos2(ϑ). Instead, the latter introduces an
angular scale determined both by the detector relative distances (baselines)
and by the time scale of the gw signals. In principle, the two scales compete
in a complicated way to determine the actual one. In fact, for co-located
detectors or extremely slow signals the relative delays in the arrival times
are negligible and the angular scale reduces to the antenna pattern one. In-
stead, for distant detectors or high-frequency signals, the interference fringes
caused by the time delays are much finer than the antenna patterns. Nev-
ertheless, the time scale of gw bursts is constrained by the finite bandwidth
of the detectors and it can be shown that, for realistic bandwidths and ac-
tual detector baselines, the resulting angular scale is much finer than the
antenna pattern one (as an example, look at the rather fine angular scale of
the interference fringes in figure 3.11).

The detector bandwidth is connected to the frequency at which the data
time series are sampled. Then, we intuitively expect that a connection
should exist as well between how we choose the sky discretization and the
sampling rate of the detector outputs.

Following these considerations, we choose an “automatic” discretization
by finding the directions for which the time delays τm(ϑ, ϕ) are multiple of
the sampling time ts. In other words, we solve the system

−rm · k(ϑ, ϕ)
c ts

= jm, jm ∈ Z (4.2)

where ϑ, ϕ are the directions to determine. Clearly, larger detector band-
widths imply lower sampling periods which leads to more solutions for sys-
tem 4.2 and thus to a finer discretization. Moreover, in the case of asymmet-
ric networks like LIGO-VIRGO, the sky is sampled non-uniformly to reflect
the actual anisotropic angular resolution of the network.

A minor, computational advantage of this choice is also the fact that the
time-shifts performed by the analysis algorithm (step 3) can be implemented
as simple shifts in the items of the arrays xm[j], thus avoiding expensive
interpolations.

We solve system 4.2 for each network by means of a preliminary dedicated
Monte Carlo algorithm. Random directions are uniformly extracted on the
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LIGO-VIRGO Ideal network

Figure 4.1: discretization of the celestial sphere obtained by numerical so-
lution of system 4.2.

sphere and the associated time delays τm(ϑ, ϕ) are evaluated, in units of
samples of the time series. The algorithm retains only those directions that
produce delays with fractional part smaller than a certain maximum error.
The sets of the resulting sky samples are sketched in figure 4.1. Interestingly,
the LIGO-VIRGO network exhibits an undersampled circular band, which
matches the great circle corresponding to the baseline between the two LIGO
instruments. The lower sampling can be understood by noting that this
baseline is shorter than the others. The consequent lower angular resolution
in such regions is automatically accounted for by the lower sampling.

It is worth noticing that the detector outputs are actually oversampled
with respect to the ∼ 1 kHz natural bandwidth assumed for the detectors,
which implies that the sky is correctly oversampled as well.

We gathered ∼ 104 solutions of system 4.2 for both networks, but we are
only using about 2 · 103 of them to relax the computational requirements.

4.2.3 Burst waveforms

Recalling the discussion of gw bursts in chapter 1, a problematic choice of
any Monte Carlo simulation involving gw bursts is our inadequate knowledge
of the actual manifold of gw waveforms. In fact, the resulting estimated
performances of the simulated detection algorithms have a meaning only
with respect to the tested signals.

Usually, gw detection algorithms are tested with simulated waveforms
from numerical relativity, as in [61], or with generic oscillating waveforms
like sine-Gaussians and transients with central frequency sweeping in time
(chirplets) as in [54].

For simplicity we adopt sine-Gaussians, i.e. the injected signals have the
form

x(t) = A exp

[
−
(
t− t0

∆t

)2
]

cos(2πft+ φ) (4.3)

where A is the amplitude, t0 is the arrival time, ∆t is the duration, f is the
central frequency and φ is the initial phase. t0 is placed at the center of each
simulated data set and a uniformly random jitter (within a few samples) is
added to it, in order to simulate the unknown arrival time and avoid possible
issues due to the synchronization between the signal and the sampling of the
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data set. φ is simply extracted from a uniform distribution in the range 0–
2π. ∆t and f are the most important parameters because they control how
much of the signal energy—in the sense of hrss—overlaps with the limited
detector bandwidth. Moreover, they control the time-frequency extension
and location and thus determine how the signal behaves with respect to the
WP decomposition. ∆t is chosen in the range 10−3–10−2 s in order to keep
the signal magnitude negligible at the extremes of each data set and avoid
border issues due to truncation. Similarly, f is chosen to avoid crossing the
70–1000 Hz bandwidth boundary.

The two waveforms associated with the two polarization states share the
same parameter values, except for the initial phase φ which is extracted
separately for each polarization.

4.3 Results of the Monte Carlo simulations

The simulations are currently being performed thanks to the computing
resources provided by the AURIGA group. The analysis of a single data set
with the presented values of the parameters takes 100–200 s on single-core
machines with ∼ 2 GHz clock speeds.

The preliminary results involve the estimation of the false alarm prob-
ability pfa for different extensions of the R3 acceptance region defined in
chapter 4 and the estimation of the detection efficiency pd for intense gw
bursts (i.e. hobs ' 102). The observed dependency of pfa on the threshold
values bears the characteristic exponential decay we expect from χ2 distri-
butions, particularly with T1 which thresholds the total energy EP + EQ.
The preliminary estimate of pd for intense gw bursts is indistinguishable
from 1 for all the tested threshold values, which makes us confident about
the Monte Carlo implementation.

The next step to be performed is a more accurate estimation of pfa
and the estimation of pd for lower-energy gw bursts, which completes the
estimation of the ROC curve around realistic and interesting values of pfa,
e.g. 10−4.
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Chapter 5

Conclusions and future
perspectives

This thesis deals with the definition of a procedure for detecting gw tran-
sients out of the detector noise and for discriminating them from instru-
mental, non-gravitational transients, which represent a major challenge in
current gw searches. The main innovations introduced with this work are
the exploitation of the gw physical signatures directly in the detection pro-
cess, rather than using them as post-detection vetoes. In addition, detection
is accomplished by a suitable acceptance region of the virtual PQ plane.

First we defined the generic scheme of an analysis pipeline for search-
ing gws bursts with a network of detectors. We suggested the synthesis of
“virtual channels” to recognize the physical properties of gws. In order to
tackle the detection and discrimination problem, the network response to
gws and the gw inverse problem were then reviewed. This led us to discuss
a number of network figures of merit, in particular ‖F ‖ and cond(F ), that
determine the effectiveness of a network for performing gw searches. The
performances of actual networks were studied under these figures of merit
and we pointed out that optimal or very good networks are in principle
feasible. We then evidenced that a simple geometrical interpretation can
be given to the network response, we recognized the physical signatures of
gws within such interpretation and we proposed to exploit such property
for the detection and discrimination of genuine gw bursts. A convenient
way is through geometric projections of the measured data. We showed how
to perform such projections and arrived at the definition of the synthetic
channels EP and EQ. We proved, both analytically and with simulations,
that under the assumption of Gaussian noise their statistics are simple and
well-behaved, even for non-ideal and ill-conditioned networks. The EP , EQ
channels were used to define the virtual PQ plane, which is populated dif-
ferently depending on the kind of signal contained in the measured data,
thanks to the statistics of EP and EQ. Accordingly, we moved the detection
and discrimination problem to the PQ plane by tracing a gw acceptance
region R in the plane and checking whether the network data enters R for
some directions in the sky. We accounted for the unknown time-frequency
structure of gw bursts by exploiting the multiresolution analysis provided by
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an orthogonal wavelet packet decomposition, performed at multiple levels.
Finally, we implemented a prototype of the detection/discrimination al-

gorithm and we ran complete Monte Carlo simulations to characterize its
performances.

Future work entails verifying the expected dependence of the detection
efficiency on the network figures of merit and testing the algorithm with
a wider class of transient signals—e.g. chirplets—to study the variation in
detection efficiency over the signal manifold accessible to realistic gw detec-
tors. Clearly, the final goal is the validation of the method with respect to
real data from current detectors, e.g. LIGO and VIRGO. In particular, the
study of how the real data populates the PQ plane is mandatory.

Furthermore, we believe that the geometrical interpretation of the net-
work response, and in particular the planar structure of gws, can be used
for the definition of other detection statistics, and we are investigating such
research lines. In principle, the method is applicable not only to impulsive
gw searches but actually to any gw signal. However, different detection
statistics could be more suited. Another interesting extension should be the
identification of more sources in the sky that contribute to the same data
set.
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